
Optimal Prediction Using Expert Advice

and

Randomized Littlestone Dimension

Yuval Filmus1,2, Steve Hanneke3, Idan Mehalel1, and Shay Moran2,1,4

1The Henry and Marilyn Taub Faculty of Computer Science, Technion, Israel
2Faculty of Mathematics, Technion, Israel

3Department of Computer Science, Purdue University, USA
4Google Research, Israel

September 4, 2023

Abstract

A classical result in online learning characterizes the optimal mistake bound achievable
by deterministic learners using the Littlestone dimension (Littlestone ’88). We prove an
analogous result for randomized learners: we show that the optimal expected mistake bound
in learning a class H equals its randomized Littlestone dimension, which we define as follows:
it is the largest d for which there exists a tree shattered by H whose average depth is 2d. We
further study optimal mistake bounds in the agnostic case, as a function of the number of
mistakes made by the best function in H, denoted by k. Towards this end we introduce the
k-Littlestone dimension and its randomized variant, and use them to characterize the optimal
deterministic and randomized mistake bounds. Quantitatively, we show that the optimal
randomized mistake bound for learning a class with Littlestone dimension d is k+Θ(

√
kd+d)

(equivalently, the optimal regret is Θ(
√
kd+ d)). This also implies an optimal deterministic

mistake bound of 2k +Θ(d) +O(
√
kd), thus resolving an open question which was studied

by Auer and Long [’99].
As an application of our theory, we revisit the classical problem of prediction using expert

advice: about 30 years ago Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth
studied prediction using expert advice, provided that the best among the n experts makes at
most k mistakes, and asked what are the optimal mistake bounds (as a function of n and k).
Cesa-Bianchi, Freund, Helmbold, and Warmuth [’93, ’96] provided a nearly optimal bound
for deterministic learners, and left the randomized case as an open problem. We resolve
this question by providing an optimal learning rule in the randomized case, and showing
that its expected mistake bound equals half of the deterministic bound of Cesa-Bianchi et al.
[’93, ’96], up to negligible additive terms. In contrast with previous works by Abernethy,
Langford, and Warmuth [’06], and by Brânzei and Peres [’19], our result applies to all pairs
n, k, and does so via a unified analysis using the randomized Littlestone dimension.

In our proofs we develop and use optimal learning rules, which can be seen as natural
variants of the Standard Optimal Algorithm (SOA) of Littlestone: a weighted variant in the
agnostic case, and a probabilistic variant in the randomized case. We conclude the paper
with suggested directions for future research and open questions.

1

Contents

1 Introduction 4

2 Main results 4
2.1 Realizable Case . 4
2.2 Agnostic Case . 6
2.3 Prediction Using Expert Advice . 7
2.4 Variations . 9

3 Technical Overview 11
3.1 Combinatorial Characterizations . 12
3.2 Quasi-balanced Trees . 13
3.3 Prediction using Expert Advice . 15

4 Background and Basic Definitions 15

5 Randomized Littlestone Dimension and Optimal Expected Mistake Bound 17
5.1 Main Result and Proof . 17
5.2 Infinite Trees . 21
5.3 Trees Maximizing the Expected Branch Length 22

6 Quasi-balanced Trees 23
6.1 Definition and Basic Properties . 23
6.2 A Concentration Lemma for Quasi-Balanced Trees 26
6.3 Applications of Quasi-Balanced Trees . 27

7 Bounded Horizon 31
7.1 Proof of Theorem 7.1 . 31
7.2 Approaching RL(H) . 32
7.3 Mistake Bound for Few Rounds . 34
7.4 Lower Bounds . 34

8 Mistake Bounds in the k-Realizable Setting 36
8.1 Weighted Hypothesis Classes . 37
8.2 Proof of Optimal Deterministic Mistake Bound 38
8.3 Proof of Optimal Randomized Mistake Bound . 40
8.4 Explicit Bounds in Terms of Littlestone Dimension 40
8.5 Adapting to k . 41
8.6 Finite Classes . 42
8.7 The Perceptron . 44

9 Prediction using Expert Advice 45
9.1 Optimal Mistake Bounds . 46
9.2 Proofs of the Upper Bounds on M⋆(n, k) . 47
9.3 Lower bounding M⋆(2, k) . 51
9.4 Determining M⋆(2, k) . 52
9.5 Approximations of D(n, k) . 53
9.6 Proper Learners are Sub-Optimal . 54

10 Open Questions 56

2

A Results of Cesa-Bianchi, Freund, Helmbold and Warmuth 61
A.1 A proof of M⋆D(n, k) ≥ (1− o(1))D(n, k) . 61
A.2 A proof of d⋆(n, k) = (1 + o(1))D(n, k) . 62
A.3 A proof of M⋆D(n, k) ≥ D(n, k)− 1 for constant k 62

3

1 Introduction

A recurring phenomenon in learning theory is that different notions of learnability are captured by
combinatorial parameters. Notable examples include the Vapnik–Chervonenkis (VC) dimension
which characterizes PAC learnability [VC74,BEHW89] and the Littlestone dimension which
characterizes online learnability [Lit88,BDPSS09]. Other examples include the Daniely–Shalev-
Shwartz and Natarajan dimensions in multiclass PAC learning [Nat89,DSS14,BCD+22], the
star number, disagreement coefficient, and inference dimension in interactive learning [Han14,
HY15,KLMZ17], the statistical query dimension in learning with statistical queries [Fel17], the
representation dimension, one-way communication complexity, and Littlestone dimension in
differentially private learning [FX15,BNS19,ABL+22], and others.

One of the simplest and most appealing characterizations is that of online learnability by the
Littlestone dimension. In his seminal work, Nick Littlestone proved that the optimal mistake-
bound in online learning a class H is exactly the Littlestone dimension of H [Lit88]. Thus, not
only does the Littlestone dimension qualitatively captures online learnability, it also provides an
exact quantitative characterization of the best possible mistake bound. This distinguishes the
Littlestone dimension from other dimensions in learning theory, which typically only provide
asymptotic bounds on the learning complexity.

However, the exact quantitative characterization of the optimal mistake bound by the
Littlestone dimension applies only in the noiseless realizable setting and only for deterministic
learners. In particular, it does not apply in the more general and well-studied setting of agnostic
online learning. The reason it does not apply is twofold: (i) because the agnostic setting allows
for non-realizable sequences, and (ii) because randomized learners are in fact necessary.1 This
suggests the following question, which guides this work:

Is there a natural dimension which captures the optimal expected mistake bound in
learning a class H using randomized learners? How about the agnostic setting when there

is no h ∈ H which is consistent with input data?

The main contribution of this work formalizes and proves affirmative answers to these
questions.

Organization. In the next section we present the main results of this work. Then, in Section 3
we provide a short technical overview, where we outline the main ideas we use in our proofs.
The remaining sections contain the complete proofs.

2 Main results

This section assumes familiarity with standard definitions and terminology from online learning.
We refer the unfamiliar reader to Section 4, which introduces the online learning model and
related basic definitions in a self-contained manner.

2.1 Realizable Case

In his seminal work from 1988, Nick Littlestone studied the optimal mistake bound in online
learning an hypothesis class H by deterministic learning rules in the realizable setting [Lit88];
that is, under the assumption that the input data sequence is consistent with a function h ∈ H.

1Randomized learners are necessary in the following sense: any agnostic online learner for a class H must be
randomized, provided that H contains at least two functions [Cov65], see also [SSBD14, Chapter 21.2].

4

Littlestone dimension. Let X be the domain, and let H be a class of “X → {0, 1}” predictors.
The Littlestone dimension of H, denoted L(H), is the maximal depth of a binary complete
decision tree T which is shattered by H. That is, a decision tree T whose nodes are associated
with points from X and whose edges are associated with labels from {0, 1} such that each of the
branches (root-to-leaf paths) in T is realized by some h ∈ H.

Littlestone proved that the optimal mistake bound achievable by deterministic learners equals
the Littlestone dimension:

Theorem 2.1 (Deterministic Mistake Bound [Lit88]). The optimal deterministic mistake bound
in online learning H in the realizable setting is equal to its Littlestone dimension, L(H).

Littlestone further described a natural deterministic learning rule, which he dubbed the
Standard Optimal Algorithm (SOA), that makes at most L(H) mistakes on every realizable input
sequence.

Randomized Littlestone dimension. Our first main result shows that a natural probabilistic
variant of the Littlestone dimension characterizes the optimal expected mistake bound for
randomized learners.

Definition 2.2 (Randomized Littlestone Dimension). Let T be binary tree, and consider a
random walk on T that starts at the root, goes to the left or right child with probability 1/2,
and continues recursively in the same manner until reaching a leaf. Let ET denote the
expected length of a random branch which is produced by this process.
The randomized Littlestone dimension of a class H, denoted by RL(H), is defined by

RL(H) =
1

2
sup

T shattered
ET .

To compare the randomized Littlestone dimension with the Littlestone dimension, notice
that the Littlestone dimension is equal to sup {mT : T shattered}, where mT is the minimum
length of a branch in T . Thus, the difference is that in RL(H) we take the expected depth rather
than the minimal depth, and multiply by a factor of 1/2.2

Theorem 2.3 (Main Result (i): Randomized Mistake Bound). The optimal randomized
mistake bound in online learning H in the realizable setting is equal to its randomized
Littlestone dimension, RL(H).

We also provide an optimal randomized learning rule which can be seen as a probabilistic
adaptation of Littlestone’s classical SOA algorithm. See Section 3.1 for a brief overview, and
Section 5.1.1 for the proof.

The connection between online learning problems and random walks was identified in the
online learning literature [AWY08,LS14a,GPS16]. [AWY08] asked, conceptually, how general is
this connection. Our results show that it is indeed quite general, in the sense that it yields the
optimal algorithm for every hypothesis class.

2From a learning theoretic perspective it is easy to see that RL(H) ≤ L(H), because randomized learners are
more general than deterministic ones. Interestingly, this inequality is less obvious from a combinatorial perspective:
indeed, for every fixed tree T we have that ET ≥ mT (because the expected length of a branch is at least the
minimal length), but it is not a priori clear why the inequality is reversed when ET is replaced by ET /2 and we
take supremum over all shattered trees. See Section 6.3.2 for further discussion.

5

2.2 Agnostic Case

We next consider the agnostic setting, in which we no longer assume that the input sequence
of examples is consistent with H. Our second main result characterizes the optimal expected
mistake bound in this setting.

A common approach for handling the agnostic case is to assume a bounded horizon and
analyze the regret. That is, it is assumed that the length of the input sequence (called the
horizon) is a given parameter T ∈ N, and the goal is to design learning rules whose mistake
bound is competitive with that of the best h ∈ H up to an additive term which is negligible
in T (this term is called the regret of the algorithm).

The bounded horizon assumption simplifies the design of learning rules, by allowing them to
depend on T. A notable example is the celebrated Multiplicative Weights (MW) learning rule,
whose learning rate depends on T. This assumption can then be lifted by standard doubling
tricks.3

The k-realizable setting. In this work we consider an alternative approach: instead of
assuming a bound T on the horizon, we assume a bound k on the number of mistakes made by
the best function in the class. Notice that this assumption can also be lifted by suitable doubling
tricks as we demonstrate in Section 2.4, where we also extend our results to the bounded-horizon
setting.

The upshot of this approach is that it allows for a precise combinatorial characterization of
the optimal mistake bound via a natural generalization of the Littlestone dimension.

2.2.1 k-Littlestone Dimension

Let H be an hypothesis class, and let k ∈ N. A sequence of examples S = {(xi, yi)}ti=1 is
k-realizable by H if there exists h ∈ H such that h(xi) ̸= yi for at most k indices i. In the
k-realizable setting we assume that the input sequence given to the learner is k-realizable. Notice
that the case k = 0 amounts to realizability by H. We say that a decision tree is k-shattered
by H if every branch is k-realizable by H. The corresponding deterministic and randomized
k-Littlestone dimensions of a class H are

Lk(H) = sup
T k-shattered

mT and RLk(H) =
1

2
sup

T k-shattered
ET .

Theorem 2.4 (Main Result (ii): k-Littlestone Dimension). Let H be an hypothesis class.

1. The optimal deterministic mistake bound in online learning H in the k-realizable
setting equals its k-Littlestone dimension, Lk(H).

2. The optimal randomized mistake bound in online learning H in the k-realizable
setting equals its k-randomized Littlestone dimension, RLk(H).

We also provide optimal learning rules which can be seen as weighted variants of Littlestone’s
classical SOA algorithm. See Section 3.1 for a brief overview and Section 8 for the proof.

As a consequence of this perspective, we prove the following theorem which provides tight
regret bounds in terms of the Littlestone dimension.

3E.g. start by running the algorithm with T = 2, and double T when reaching the (T+ 1)’st example.

6

Theorem 2.5 (Main Result (iii): Optimal Regret Bounds for Littlestone Classes). Let H
be an hypothesis class and let k ∈ N. Then

RLk(H) = k +Θ
(√

k · L(H) + L(H)
)
.

In particular, the optimal regret in online learning H is Θ
(√

k · L(H) + L(H)
)
, where k

is the number of mistakes made by the best function in H.

This improves and refines over results by [AL99, ABED+21]. The work by [ABED+21]

determined an optimal regret bound of Θ
(
L(H) +

√
T · L(H)

)
, where T is the time horizon.

The above bound refines it by replacing T with k ≤ T . The work by [AL99] studies the optimal
deterministic mistake bound in online learning H in the k-realizable setting. Theorem 2.5 and
the deterministic lower bound of [LW94] imply that the deterministic mistake bound is

Lk(H) = 2k +Θ(L(H)) +O
(√

k · L(H)
)
. (see Proposition 6.11)

This improves over [AL99, Theorem 4.4], which gives an upper bound of (2 + 2.5ϵ)k +
O
(
1
ϵ log

1
ϵ

)
L(H) for every 0 < ϵ ≤ 1/20. See Section 8.4 for the proof of Theorem 2.5.

2.3 Prediction Using Expert Advice

In this section, we consider the problem of prediction using expert advice [Vov90,LW94]. This
problem studies a repeated guessing game between a learner and an adversary. In each round of
the game, the learner needs to guess the label that the adversary chooses. In order to do so, the
learner can use the advice of n experts. Formally, each round i in the game proceeds as follows:

(i) The experts present predictions ŷ
(1)
i , . . . , ŷ

(n)
i ∈ {0, 1}.

(ii) The learner predicts a value pi ∈ [0, 1].

(iii) The adversary reveals the true answer yi ∈ {0, 1}, and the learner suffers the loss |yi − pi|.

The value pi should be understood as the probability (over the learner’s randomness) of predict-
ing yi = 1. Notice that the adversary only gets to see pi, which reflects the assumption that
the adversary does not know the learner’s internal randomness. Notice also that the suffered
loss |yi − pi| exactly captures the probability that the learner makes a mistake. The above is a
standard way to model randomized learners in online learning, see e.g. [Sha12,Haz19,CBL06].
If pi ∈ {0, 1} for all i, then the learner is deterministic, in which case |yi − pi| is the binary
indicator for whether the learner made a mistake.

We focus here on the k-realizable setting, which was suggested by [CBFHW96,CBFH+97]
and further studied by [ALW06,MS10,BP19]. Here, the adversary must choose the answers so
that at least one of the experts makes at most k mistakes. That is, there must exist an expert j

such that yi ̸= ŷ
(j)
i for at most k many indices i.

The goal is to determine the optimal loss of the learner as a function of n and k. Let M⋆D(n, k)
denote the optimal loss of a deterministic learner and M⋆(n, k) denote the optimal loss of a
(possibly) randomized learner.4

4Note that we assume here that k is known to the learner and that the horizon (i.e. number of rounds in the
game) might be unbounded. In Section 2.4.2 below we explain how to extend our results to the complementing
cases.

7

The starting point is the basic fact5 that

M⋆D(n, k)

2
≤ M⋆(n, k) ≤ M⋆D(n, k). (1)

In their seminal work, Cesa-Bianchi et al. [CBFH+97] exhibited a randomized algorithm which
witnesses that in the regime when k ≫ log n or k ≪ log n, the lower bound in Equation 1 is
tight up to a relative factor of o(1), (See their Theorem 4.4.3).

In a follow up work, [CBFHW96] aimed to find optimal deterministic and randomized
algorithms. They found a nearly optimal deterministic algorithm called binomial weights, which
is optimal (up to an additive constant) when k is small enough. The main problem they left open
is whether there is a randomized learner with loss exactly half the loss of their binomial weights
algorithm (plus, maybe, a constant). Below we show that the answer to this question is negative,
and find tight guarantees on the second-order term in M⋆(n, k), in terms of the performances of
their algorithm.

Nearly 10 years later, Abernathy, Langford and Warmuth [ALW06] showed that M⋆(n, k) ≤
M⋆D(n, k)/2 + C for every k and every n ≥ N(k), where C is a universal constant (independent
of n, k), thus showing that in the regime when k = O(1) the additive negligible term is indeed a
universal constant (independent of n, k).

More recently, Brânzei and Peres [BP19] showed that M⋆(n, k) ≤ (12 + o(1))M⋆D(n, k) for k =
o(log n), while quantitatively improving upon the bounds given by [CBFH+97] in this regime.

In the next theorem we provide guarantees on M⋆(n, k) for all n ≥ 2 and k ≥ 0, which are
tight when n = 2, thus fully resolving the question raised by [CBFHW96].6 Our lower bound
shows that the second-order term tends to infinity when n = 2. The latter shows that the result
by [ALW06] does not apply for general n, k.

Theorem 2.6 (Main Result (iv): Bounds for Randomized Predictors). Let M⋆(n, k) denote
the optimal expected mistake bound for prediction using expert advice in the k-realizable
setting when there are n experts, and let D(n, k) denote the mistake bound of the binomial
weights algorithm. For all n ≥ 2 and k ≥ 0,

M⋆(n, k) ≤ D(n, k)

2
+O

(√
D(n, k)

)
.

Furthermore, the error term cannot be improved for n = 2:

M⋆(2, k) =
D(2, k)

2
+ Ω

(√
D(2, k)

)
.

We prove the upper bound in Section 9.2, and the lower bound in Section 9.3. Both bounds
are proved using the randomized k-Littlestone dimension. A special case of Theorem 2.5 states
that M⋆(n, k) = k +Θ

(√
k log n+ log n

)
, where the upper bound in this quantitative bound was

first proved in [CBFH+97].
Using Theorem 2.6 and the bounds of [CBFHW96], we obtain the following corollary.

5One might be tempted to interpret these inequalities as implying that M⋆(n, k) and M⋆D(n, k) are nearly the
same. However, the multiplicative gap of 1/2 can be significant. For example, a randomized learner with a
non-trivial error rate of 25% corresponds to a deterministic learner with 50% error-rate. The latter is trivially
achieved by a random guess. For the same reason, sublinear regret guarantees can only be achieved by randomized
learners, although they are “just” a factor of 1/2 better than deterministic learners, see e.g. [CBL06,Sha12,Haz19].

6When n = 1, M⋆(1, k) = M⋆D(1, k) = k.

8

Corollary 2.7. For all n ≥ 2 and k ≥ 0,

M⋆(n, k) =

(
1

2
+ o(1)

)
M⋆D(n, k).

This also follows from the results of [Vov90] for randomized learners.7

In Section 9.6 we prove that any optimal learning rule must necessarily be improper, in the
sense that it cannot always predict using convex combinations of the n experts.

Additional Related Work. Different variants of the experts problem have been extensively
studied in the past 30 years and various techniques for bounding the optimal regret and
mistake bounds were developed throughout the years, such as sequential Rademacher complexity
[RSS12,RS14], drifting games [MS10,LS14b], and the Hedge setting [AWY08,FS97]. However,
those techniques are seemingly tailored for randomized proper learners (i.e., learners that predict
using a distribution over the experts which is updated at the end of each round), and proper
learners are inherently suboptimal for the experts problem, even in the realizable case, as proven
in Section 9.6. [AWY08] identified the optimal proper algorithm, using a random walk analysis,
which is similar to our characterization results. It will be interesting to investigate whether
variations of these techniques can reproduce or even improve the bounds in this work.

2.4 Variations

2.4.1 Bounded Horizon

Consider learning H in the k-realizable setting, and let M⋆k = M⋆k(H) denote the optimal expected
mistake bound. In particular, this means that the adversary can force M⋆k mistakes in expectation
on any randomized learner. This would be tolerable if in order to do so the adversary must use
many examples, say 1000M⋆k. Indeed, this would mean that the learner makes only one mistake
per a thousand examples (amortized), which is rather good.

This raises the question to what extent does M⋆k capture the optimal mistake bound under
the additional assumption that the horizon is bounded by a given T ∈ N. A bounded horizon is
often assumed in the online learning literature, and in fact this question was explicitly asked
by [CBFH+97] in the special case of prediction using expert advice.

Let M⋆k(T) denote the optimal expected mistake bound in the k-realizable setting with horizon
bounded by T. The following result shows that M⋆k provides an excellent approximation of M⋆k(T);
in particular, the scenario described above is impossible.

7In the COLT 2023 proceedings version of this paper, this corollary was unintentionally presented as brand
new.

9

Theorem 2.8 (Main Result (v): Bounded vs Unbounded Horizon). Let H be an hypothesis
class. Let M⋆k denote the optimal expected mistake bound in online learning H in the k-
realizable setting, and let M⋆k(T) denote the optimal expected mistake bound under the
additional assumption that the input sequence has length at most T. Then,

1. Long horizon. If T > 2M⋆k then

M⋆k −
√

8M⋆k ln M
⋆
k − 1 ≤ M⋆k(T) ≤ M⋆k.

2. Short Horizon. If T ≤ 2M⋆k then

T

2
−

√
8T lnT− 1 ≤ M⋆k(T) ≤ T

2
,

and if T ≤ M⋆k then M⋆k(T) = T
2 .

The upper bounds in Theorem 2.8 follow from basic facts: indeed, M⋆k(T) ≤ M⋆k holds because
assuming a bounded horizon restricts the adversary, and M⋆k(T) ≤ T

2 follows by guessing each
label uniformly at random. The lower bounds are more challenging, and our proofs of them
relies heavily on the randomized Littlestone dimension.

Our proof of Theorem 2.8 appears in Section 7.3. The proof relies on a simple extension
of our characterization to this setting: consider the following modification of the Littlestone
dimension and its randomized variant:

Lk(H,T) = sup
T shattered
depth(T)≤T

mT and RLk(H,T) =
1

2
sup

T shattered
depth(T)≤T

ET .

The bounded randomized Littlestone dimension gives the precise mistake bound in this setting:

Theorem 2.9 (Optimal Mistake Bounds: Bounded Horizon). Let H be an hypothesis class.

1. The optimal deterministic mistake bound in online learning H in the k-realizable setting
with horizon T equals its bounded k-Littlestone dimension, Lk(H,T).8

2. The optimal randomized mistake bound in online learning H in the k-realizable setting with
horizon T equals its bounded k-randomized Littlestone dimension, RLk(H,T).

We prove Theorem 2.9 in Section 7.1.

Prediction using Expert Advice. Also the problem of prediction using expert advice is
often considered when the number of rounds is bounded (e.g. [CBFH+97]). Let M⋆(n, k,T) be
the optimal loss of the learner when the number of rounds is T. By a simple reduction to
Theorem 2.9 we show that

M⋆(n, k,T) ≈

{
M⋆(n, k) if T ≥ 2M⋆(n, k),
T
2 if T < 2M⋆(n, k).

The exact bounds are as in Theorem 2.9 when replacing M⋆(n, k,T) and M⋆(n, k) with M⋆k(T)
and M⋆k.

8Trivially, Lk(H,T) = min{T, Lk(H)}.

10

2.4.2 Adaptive Algorithms

The analysis in much of this work considers the case where the learning algorithm may depend
explicitly on a bound k on the number of mistakes of the best hypothesis (or expert). However,
it is also desirable to study mistake bounds achievable adaptively : that is, by a single algorithm
that applies to all k. We present here one simple approach to obtaining such an algorithm, with
a corresponding mistake bound. However, the bound we obtain may likely be improvable, and
generally we leave the question of obtaining a tightest possible adaptively-achievable mistake
bound as an open problem.

Theorem 2.10. There is an adaptive algorithm (i.e., which has no knowledge of k⋆) such that,
for every k⋆-realizable sequence for H, its expected number of mistakes is at most

M⋆k⋆ +O

(√
M⋆k⋆ log

(
(k⋆ + 1) log M⋆k⋆

))
.

In the special case of the general experts setting, since we know that M⋆(n, k⋆) = Ω(k⋆+log(n)),
we obtain the following bound on the expected number of mistakes:

M⋆(n, k⋆) +O
(√

M⋆(n, k⋆) log M⋆(n, k⋆)
)
= (1 + o(1))M⋆(n, k⋆).

In particular, combining this with Theorem 2.6, we find that this algorithm adaptively still
achieves an expected number of mistakes

(
1
2 + o(1)

)
M⋆D(n, k

⋆).
On the other hand, in the case of concept classesH with a bounded Littlestone dimension L(H),

we know from Theorem 2.5 that

M⋆k⋆ ≤ k⋆ +O
(√

k⋆L(H) + L(H)
)
.

Theorem 2.10 implies that the adaptive procedure nearly preserves the form of this upper bound,
guaranteeing a slightly larger bound of the form

k⋆ +O
(√

k⋆L(H) log(k⋆ log L(H)) + L(H)
)
.

Our proof of Theorem 2.10 appears in Section 8.5. The adaptive technique we propose
involves using an experts algorithm of [KvE15] named Squint, with experts defined by the
optimal randomized algorithm for the k-realizable setting, for all values of k.

3 Technical Overview

In its greatest generality, online prediction is a game involving two randomized parties, an
adversary who is producing examples, and a learner who is trying to correctly predict the labels
of all or most of these examples. In the realizable case, the adversary is moreover constrained by
an hypothesis class which must be adhered to.

Various techniques are used in the literature to analyze this sophisticated setting. On the
one hand, learning rules show which hypothesis classes lend themselves to learning, and on the
other hand, strategies for the adversary put limitations on what can be learned, and at what
cost.

In this work, we identify the combinatorial core behind many settings of online learning. In
this, we follow up on Nick Littlestone’s classical work on deterministic online learning, as well
as on other classical work in learning theory such as that the foundational work of Vapnik and
Chervonenkis.

Reducing the messy probabilistic setting of online learning to the clean combinatorial setting
of shattered trees enables us to tackle open questions about prediction using expert advice,
which are hard to approach directly.

11

3.1 Combinatorial Characterizations

The Littlestone dimension of an hypothesis class H is the maximal depth of a complete binary
tree which is shattered by H. A tree of depth D easily translates into a strategy for the adversary
which forces the learner to make D mistakes. In other words, a tree shattered by H is an obvious
obstacle to learning H.

The magic of Littlestone dimension is the opposite direction: Littlestone’s SOA learning
rule makes at most L(H) mistakes, showing that trees shattered by H are the only obstacle for
learning H. This is a common phenomenon in mathematics: an obvious necessary condition
turns out to be (less obviously) sufficient.

Defining the randomized Littlestone dimension. In order to motivate the definition
of the randomized Littlestone dimension, let us first examine the (deterministic) Littlestone
dimension. Given a tree T shattered by H, the adversary executes the following strategy, starting
at the root:

At an internal node labeled x, ask the learner for the label of x, and follow the opposite edge.

This strategy follows a branch of T , and forces the learner to make a mistake in each round.
The total number of mistakes which the adversary can guarantee is precisely mT , the minimum
length of a branch in T . The resulting input sequence is realizable by H since T is shattered
by H.

The definition of the randomized Littlestone dimension follows a similar approach, but uses
a different strategy for the adversary:

At an internal node labeled x, ask the learner for the label of x, and follow a random edge.

This strategy also follows a branch of T , and it forces the learner to make half a mistake in
each round, in expectation.9 The total expected number of mistakes is ET /2, where ET is the
expected length of a random branch of T .

We define the randomized Littlestone dimension by considering all such adversary strategies:

RL(H) =
1

2
sup

T shattered
ET .

The supremum is not always achieved, even if we allow infinite trees, as we demonstrate in
Section 5.3.

Extending the Standard Optimal Algorithm. Littlestone’s Standard Optimal Algorithm
(SOA) makes at most L(H) mistakes on any realizable input sequence. The algorithm is very
simple. It maintains a subset V of H which consists of all hypotheses which are consistent with
the data seen so far. Given a sample x, one of the following must hold, where Vx→y is the subset
of V consisting of all hypotheses assigning to x the label y:

1. L(Vx→0) < L(V). The learner predicts ŷ = 1.

2. L(Vx→1) < L(V). The learner predicts ŷ = 0.

9Recall that we model a randomized learner as a learner which makes a “soft” prediction p ∈ [0, 1]; if the
true label is y, then the learner’s loss is |p − y|. When we choose the label y at random, the expected loss is
E[|p− y|] = 1

2
regardless of p.

12

One of these cases must hold, since otherwise we could construct a tree of depth L(V) + 1
shattered by V . Each time that the learner makes a mistake, L(V) decreases by 1, and so the
learner makes at most L(H) mistakes.

Our randomized extension of SOA, which we call RandSOA, follows a very similar strategy.
It maintains V in the same way. Given a sample x, we want to make a prediction p which
“covers all bases”, that is, results in a good outcome for the learner whatever the correct label y
is. Given a prediction p, the adversary can guarantee a loss of

max{p+ RL(Vx→0), 1− p+ RL(Vx→1)}.

For the optimal choice of p, this quantity is at most RL(V), as we show in Section 5.1.1.

The k-realizable setting and weighted SOA. The k-realizable setting is handled similarly.
In the definition of randomized Littlestone dimension, instead of requiring the tree to be shattered,
it suffices for it to be k-shattered, since the adversary need only produce an input sequence
which is k-realizable.

The main novelty in this setting is a weighted analog of the SOA learning rule. This weighted
SOA rule relates to the classical SOA in a similar way like the Weighted Majority algorithm
relates to Halving. In particular, it keeps track, for each hypothesis, how many more mistakes
are allowed. Accordingly, we consider the more generalized setting of weighted hypothesis classes.
These are hypothesis classes in which each hypothesis has a “mistake budget”. The definition of
randomized Littlestone dimension extends to this setting, and allows us to generalize RandSOA
to the randomized agnostic setting.

3.2 Quasi-balanced Trees

Given an hypothesis class H, how does an optimal strategy for the adversary look like? Such a
strategy must make the analysis of RandSOA tight, and in particular, if the first sample it asks
is x, then

RL(H) = p+ RL(Hx→0) = 1− p+ RL(Hx→1),

where p is the prediction of the learner.10

The strategy of the adversary naturally corresponds to a tree which is shattered by H: the
root is labeled x, and the edge labeled y leads to a tree corresponding to an optimal strategy for
Hx→y. Suppose that we further assign weights to the edges touching the root: the 0-edge gets
the weight p, and the 1-edge gets the weight 1− p. If we assign weights to the remaining edges
recursively then the resulting tree satisfies the following property:

Every branch has the same total weight RL(H).

More generally, a tree T is quasi-balanced if we can assign non-negative weight to its edges
such that (i) the weights of the two edges emanating from a vertex sum to 1, and (ii) all branches
have the same total weight (which must be ET /2). If a tree is quasi-balanced then the weight
assignment turns out to be unique.

A tree in which all branches have the same depth is quasi-balanced, but the class of quasi-
balanced trees is a lot richer, including for example the path appearing in Figure 1.

There is a simple criterion for quasi-balancedness:

10Strictly optimal strategies do not always exist, and even when they do, they might require an unbounded
number of rounds. For the sake of exposition we gloss over these difficulties.

13

1
8

1
4

1
2

1
2

3
4

7
8

Figure 1: A quasi-balanced tree. The edges are labeled with the unique weights. The sum of
weights in each branch is 7

8 , which is half the expected branch length 7
4 .

A tree T is quasi-balanced if and only if it is monotone: if w is a descendant of v then
ETw ≤ ETv , where Tu is the subtree rooted at u.

Since the loss guaranteed by an adversary following the strategy corresponding to a tree T is
ET /2, it is clear that the best strategy is always monotone. This argument shows that

RL(H) =
1

2
sup

T shattered, monotone
ET .

In other words, it suffices to consider only quasi-balanced trees when defining the randomized
Littlestone dimension. This is the randomized counterpart of a trivial property of the Littlestone
dimension: in order to define the Littlestone dimension, it suffices to consider balanced trees,
that is, trees in which all branches have the same length. We can view quasi-balancedness as a
relaxation of strict balancedness.

Concentration of expected branch length. The randomized Littlestone dimension is
defined in terms of the expected branch length. However, several of our results require knowledge
of the distribution of the branch length.

For example, Theorem 2.8 states that 2RL(H) +O(
√
RL(H) log(RL(H)/ϵ)) rounds are needed

in order for the adversary to guarantee a loss of RL(H)− ϵ. The number of rounds corresponds
to the depth of the tree, and so the natural way to prove such a result would be to start with
a tree T satisfying ET /2 = RL(H), and prune it to depth 2RL(H) + O(

√
RL(H) log(RL(H)/ϵ)).

We would like to say that this does not reduce the expected branch length by much, since the
length of most branches does not exceed ET by much. Other applications such as prediction
using expert advice need concentration from the other side (the length of most branches does
not fall behind ET by much).

It is possible to construct trees for which the length of a random branch isn’t concentrated
around its expectation. For example, we can take an infinite path which, every so often, splits
into a deep complete binary tree. If we are careful, we can guarantee that the expected branch
length is finite but its variance is infinite.

At this point, quasi-balancedness comes to the rescue. The monotonicity property of quasi-
balanced trees implies that the choice of an edge at every step of a random branch does not affect
the final length by much. Consequently, Azuma’s inequality (a version of Chernoff’s inequality
for martingales) shows that for quasi-balanced trees, the length of a random branch is strongly
concentrated around its expectation. This simple observation drives several of our strongest
results.

14

3.3 Prediction using Expert Advice

At first, the setting of prediction using expert advice looks similar, but not identical, to our
setting. However, it turns out that it is actually a special case of our setting, for a specific
hypothesis class known as the universal hypothesis class Un.

The class Un contains n different hypotheses, which correspond to the experts. For each
possible set of predictions ŷ(1), . . . , ŷ(n) there is a corresponding element in the domain. In
other words, the domain is X = {0, 1}n, and the hypotheses in Un are the n projections
hi(x1, . . . , xn) = xi.

With this equivalence in place, we can apply the theory we have developed so far to analyze
prediction using expert advice. Our main result concerning this setting, Theorem 2.6, consists
of an upper bound on M⋆(n, k), and a lower bound on M⋆(2, k).

We start with the upper bound on M⋆(n, k). In view of the equivalence above, we want to
bound the expected branch length of any tree T which is k-shattered by Un. We can assume
that T is quasi-balanced, and so the length of a random branch of T is roughly ET . If T were
strictly balanced, then a random branch would be k-realizable by Un with probability at most

n

(
ET
≤k

)
2ET

.

[CBFHW96] have shown that the largest value of ET for which this quantity is at least 1, which
we denote by D(n, k), provides the state-of-the-art upper bound on M⋆D(n, k). Since T is only
quasi-balanced, we get a slightly worse bound.

A nice proof of the lower bound on M⋆(2, k) is given by identifying the optimal tree. Intuitively,
it seems obvious that rounds in which both experts make the same prediction are “wasteful”, and
we can show this formally. By symmetry, we can assume that the first expert always predicts 0
and that the second expert always predicts 1. We can construct the corresponding tree explicitly,
and conclude that

M⋆(2, k) = k +
(k + 1/2)

(
2k
k

)
4k

.

4 Background and Basic Definitions

Unless stated otherwise, our logarithms are base 2.

Online Learning. Let X be a set called the domain, and Y be a set called the label set. In
this work we focus on binary classification, and thus Y = {0, 1}. A pair (x, y) ∈ X × Y is called
an example, and an element x ∈ X is called an instance or an unlabeled example. A function
h : X → Y is called a hypothesis or a concept. A hypothesis class, or a concept class, is a set
H ⊂ YX . A sequence of examples S = {(xi, yi)}ti=1 is said to be realizable by H if there exists
h ∈ H such that h(xi) = yi for all 1 ≤ i ≤ t.

Online learning [SSBD14,CBFH+97] is a repeated game between a learner and an adversary.
Each round i in the game proceeds as follows:

(i) The adversary sends the learner an unlabeled example xi ∈ X .

(ii) The learner predicts a value pi ∈ [0, 1] and reveals it to the adversary.

(iii) The adversary reveals the true label yi, and the learner suffers the loss |yi − pi|.

The value pi should be understood as the probability (over the learner’s randomness) of predict-
ing yi = 1. Notice that the adversary only gets to see pi, which reflects the assumption that

15

the adversary does not know the learner’s internal randomness. Notice also that the suffered
loss |yi − pi| exactly captures the probability that the learner makes a mistake. The above is a
standard way to model randomized learners in online learning, see e.g. [Sha12]. If pi ∈ {0, 1} for
all i, then the learner is deterministic, in which case |yi − pi| is the binary indicator for whether
the learner made a mistake.

We model learners as functions Lrn : (X × Y)⋆ ×X → [0, 1]. Given a learning rule Lrn and
an input sequence of examples S = (x1, y1), . . . , (xt, yt), we denote the (expected) number of
mistakes Lrn makes on S by

M(Lrn;S) =
t∑

i=1

|yi − pi|,

where pi = Lrn((x1, y1), . . . , (xi−1, yi−1), xi) is the prediction of the learner on the i’th example.
An hypothesis class H is online learnable (or learnable) if there exists a finite bound M and

a learning rule Lrn such that for any input sequence S which is realizable by H it holds that
M(Lrn;S) ≤ M . We define the optimal randomized mistake bound of H to be

M⋆(H) = inf
Lrn

sup
S

M(Lrn;S) (2)

where the infimum is taken over all learning rules, and the supremum is taken over all realizable
input sequences S.

We denote by M⋆D(H) the optimal deterministic mistake bound of H. That is, M⋆D(H) is
defined in the same way as M⋆(H), with the additional restriction that Lrn must be deterministic
(that is, the output must be in {0, 1}).

When H = ∅, the set of realizable input sequences is empty, and therefore the supremum is not
defined. It is technically convenient to deal with this special case by defining M⋆D(∅) = M⋆(∅) = −1.
When the context is clear, we may sometimes refer to the deterministic or randomized mistake
bound as the accumulating loss of the learner through the entire game, or simply as the learner’s
loss through the entire game.

Decision Trees and the Littlestone Dimension. In this paper, a tree T refers to a finite
full rooted ordered binary tree (that is, a rooted binary tree where each node which is not a leaf
has a left child and a right child), equipped with the following information:

1. Each internal node v is associated with an instance x ∈ X .

2. For every internal node v, the left outgoing edge is associated with the label 0, and the
right outgoing edge is associated with the label 1.

We stress that by default, the trees we consider are finite and their vertices are labeled.
Whenever we consider infinite trees or unlabeled trees, we specifically mention these attributes.

The tree is directed from the root towards the leaves.
A prefix of the tree T is any path that starts at the root. In this paper, a path is defined

by a sequence of consecutive vertices. If a path is not empty, we may refer it by the sequence
of consecutive edges corresponding with the sequence of consecutive vertices defining it. A
prefix v0, v1, . . . , vt defines a sequence of examples (x1, y1), . . . , (xt, yt) in a natural way: for
every i ∈ [t], xi is the instance corresponding to the node vi−1, and yi is the label corresponding
to the edge vi−1 → vi. A prefix is called maximal if it is maximal with respect to containment,
that is, there is no prefix in the tree that strictly contains it. This is equivalent to requiring that
vt be a leaf. A maximal prefix is called a branch, and the set of branches of T is denoted by
B(T). The length of a prefix is the number of edges in it (so, the length is equal to the size of
the corresponding sequence of examples).

16

A prefix in the tree is said to be realizable by H if the corresponding sequence of examples
is realizable by H. A tree T is shattered by H if all branches in T are realizable by H. The
Littlestone dimension of an hypothesis class H, denoted by L = L(H), is the maximal depth of a
complete (also known as perfect, or balanced) binary tree (that is, a tree in which all branches
have the same depth) shattered by H if H ̸= ∅, and −1 when H = ∅. If the maximum does not
exist, then L = ∞.

Littlestone Dimension ≡ Optimal Deterministic Mistake Bound. In his seminal work
from 1988, Nick Littlestone proved that the optimal mistake bound of a deterministic learner is
characterized by the Littlestone dimension:

Theorem 4.1 (Optimal Deterministic Mistake Bound [Lit88]). Let H be an hypothesis class.
Then, H is online learnable if and only if L(H) < ∞. Further, the optimal deterministic mistake
bound satisfies M⋆D(H) = L(H).

Doob’s Exposure Martingales. Let f : {0, 1}N → R. Consider the random variable X =
f (⃗b), where b⃗ is sampled uniformly at random. Define a sequence L0, L1, L2, . . . , each defined
by Li = E[X|b1, . . . , bi−1] (so L0 = E[X]). The sequence L0, L1, L2, . . . is called an exposure
martingale. It is well-known that an exposure martingale is indeed a martingale [Doo53].

5 Randomized Littlestone Dimension and Optimal Expected
Mistake Bound

In this section we study the randomized Littlestone dimension. We start with Section 5.1, in
which we define the randomized Littlestone dimension and prove that it characterizes the optimal
randomized mistake bound exactly.

The randomized Littlestone dimension is defined using trees, which correspond to strategies
of the adversary. We study a special class of trees, quasi-balanced trees, in Section 6.1. We show
that they give optimal strategies for the adversary. Several applications of quasi-balanced trees
are presented in Section 6.3; more applications are found throughout the paper. We close this
section by showing how to accommodate infinite trees (Section 5.2), and by briefly discussing
the issue of trees attaining the randomized Littlestone dimension exactly (Section 5.3); more
discussion on the latter issue appears in Section 8.

5.1 Main Result and Proof

The first main contribution of this paper is a characterization of the optimal randomized mistake
bound in terms of a combinatorial parameter we call the randomized Littlestone dimension and
denote by RL = RL(H).

We define RL(H) using a natural distribution on the branches of trees (a branch is a root-
to-leaf path). Given a tree T , a random branch is chosen by starting at the root, and at each
step, picking an edge leaving the current vertex uniformly at random, until reaching a leaf. We
denote the expected length of a random branch by ET . It is given explicitly by the formula

ET =
∑

b∈B(T)

|b| · 2−|b|,

where B(T) is the set of branches of T . If we think of a random branch as a distribution over
B(T), then ET is its entropy.

17

It is convenient to define the length of the empty branch to be −1. With this convention,
the expected branch length in T satisfies the recursion

ET = 1 +
ET0 + ET1

2
, (3)

where T0, T1 are the subtrees of the root of T , which are empty when T is a leaf.

Definition 5.1 (Randomized Littlestone Dimension). Let H be an hypothesis class. The
randomized Littlestone dimension of H, denoted by RL(H), is defined by

RL(H) =
1

2
sup

T shattered
ET .

In the special case when H = ∅, define RL(H) = −1.

To compare RL(H) with L(H), let us consider the following equivalent way of defining L(H):

L(H) = sup
T shattered

mT ,

where mT is the minimum length of a branch in T . Thus, the difference is that in RL(H) we
take the expected depth rather than the minimal depth, and multiply by a factor of 1/2.

Theorem 5.2 (Optimal Randomized Mistake Bound). Let H be an hypothesis class. Then,

M⋆(H) = RL(H).

We prove the theorem in Subsection 5.1.1 using randomized SOA, a randomized adaptation
of Littlestone’s classical SOA algorithm. This shows that the infimum in Equation (2) is realized
by a minimizer.

5.1.1 Proof of Theorem 5.2

The case H = ∅ holds by definition. Therefore we assume that H ̸= ∅. The lower bound
“RL(H) ≤ M⋆(H)” boils down to the following lemma:

Lemma 5.3. Let H be an hypothesis class, and let T be a finite tree which is shattered by H.
Then, for every learning rule Lrn there exists a realizable sequence S so that M(Lrn;S) ≥ ET /2.
Moreover, there exists such a sequence S which corresponds to one of the branches of T .

Proof. The proof is given by a simple probabilistic argument. Suppose that we pick a random
branch in the tree according to the random branch distribution: begin at the root, pick a random
child of the root uniformly at random, and recursively pick a random branch in the corresponding
subtree. Consider the random variable

LT = M(Lrn;S),

where S is the sequence of examples corresponding to a random branch drawn as above. It
suffices to show that E[LT] = ET /2. We prove this by induction on the depth of T .

In the base case, T is a single leaf, and there are no internal nodes. Hence S is always the
empty sequence, and E[LT] = 0 = ET /2, as required.

For the induction step, let T0 and T1 be the left and right subtrees of T , respectively. The
expected loss of Lrn on the first example in S is 1/2, because the label y ∈ {0, 1} is chosen

18

uniformly at random, independently of the learner’s prediction (formally, |0−p|+|1−p|
2 = 1/2 for

all p ∈ [0, 1]). Therefore, by linearity of expectation,

E[LT] =
1 + E[LT0] + E[LT0]

2

=
1 + ET0/2 + ET1/2

2
(by the induction hypothesis)

= ET /2, (by Eq. (3))

as required.

By applying Lemma 5.3 on every shattered tree and taking the supremum, we conclude the
lower bound:

Corollary 5.4 (Lower bound). For every hypothesis class H it holds that M⋆(H) ≥ RL(H).

We now turn to prove the upper bound “RL(H) ≥ M⋆(H)”. This is achieved via the RandSOA
learning rule, described in Figure 2.

We begin with the following useful property of RL:

Observation 5.5. Let H be a non-empty hypothesis class. Then,

RL(H) =
1

2
sup
x∈X

(
1 + RL(Hx→0) + RL(Hx→1)

)
.

Proof. Observation 5.5 follows from Equation (3): let S(H) denote the set of trees that are
shattered by H, and for x ∈ X , let Sx(H) ⊆ S(H) denote the set of trees that are shattered by
H whose root is labeled by x. Then,

RL(H) =
1

2
sup

T∈S(H)
ET =

1

2
sup
x

sup
T∈Sx(H)

ET .

By Equation (3),

sup
T∈Sx(H)

ET = 1 +
supT1∈S(Hx→1)ET1 + supT0∈S(Hx→0)ET0

2
= 1 + RL(Hx→1) + RL(Hx→0),

which finishes the proof.

Notice that the classical Littlestone dimension satisfies a similar recursion:

L(H) = sup
x∈X

(
1 + min{L(Hx→1), L(Hx→0)}

)
.

The following lemma is the crux of the analysis: it guides the choice of the prediction pi in each
round.

Lemma 5.6 (Optimal prediction for each round). Let H be an hypothesis class, and let x ∈ X .
Then there exists p ∈ [0, 1] so that

p+ RL(Hx→0) ≤ RL(H) and (1− p) + RL(Hx→1) ≤ RL(H).

19

RandSOA: Randomized SOA

Input: An hypothesis class H.
Initialize: Let V (1) = H.

For i = 1, 2, . . .

1. Receive xi.

2. Predict pi ∈ [0, 1] such that the value

max
{
pi + RL

(
V

(i)
xi→0

)
, 1− pi + RL

(
V

(i)
xi→1

)}
(4)

is minimized, where V
(i)
xi→b = {h ∈ V (i) : h(xi) = b}.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 2: The randomized SOA is a variation of SOA that finds an optimal randomized prediction
in every round. SOA is the name of the original deterministic algorithm by Littlestone [Lit88],
and it stands for “Standard Optimal Algorithm”.

Proof of Lemma 5.6. If RL(H) = ∞ then the lemma is trivial. Therefore we assume that
RL(H) < ∞. Assume first that |RL(Hx→0)− RL(Hx→1)| > 1. If RL(Hx→0)+ 1 < RL(Hx→1), then
by choosing p = 1 and applying the fact that RL(H′) ≤ RL(H) if H′ ⊆ H we get

p+ RL(Hx→0) = 1 + RL(Hx→0) < RL(Hx→1) ≤ RL(H),

1− p+ RL(Hx→1) = RL(Hx→1) ≤ RL(H),

as desired. The case RL(Hx→1) + 1 < RL(Hx→0) is treated similarly.
It remains to handle the case when |RL(Hx→0)− RL(Hx→1)| ≤ 1. Set

p :=
1 + RL(Hx→1)− RL(Hx→0)

2
.

By assumption, p ∈ [0, 1], and also

p+ RL(Hx→0) = 1− p+ RL(Hx→1)

=
1 + RL(Hx→0) + RL(Hx→1)

2
≤ RL(H). (Observation 5.5)

Lemma 5.7 (Upper bound). Let H be an hypothesis class. Then the RandSOA learner described
in Figure 2 has expected mistake bound

M(RandSOA;S) ≤ RL(H)

for every realizable input sequence S.

20

Proof. The proof is by induction on the length of the input sequence. Let S = (x1, y1), . . . , (xt, yt)
be a realizable sequence. In the base case t = 0 we have M(RandSOA;S) = 0 ≤ RL(H). For
the induction step, assume that t ≥ 1, and let S′ = (x2, y2), . . . , (xt, yt) be the input sequence
without the first example. In the first round, the learner predicts p1 ∈ [0, 1] as defined in step 2
of RandSOA. Thus, the learner’s expected accumulated loss on S is

M(RandSOA;S) = |p1 − y1|+ M(RandSOA;S′). (5)

By the induction hypothesis we have

M(RandSOA;S′) ≤ RL(Hx1→y1). (6)

Also, by Lemma 5.6 it holds that p1 + RL(Hx1→0) ≤ RL(H) and 1− p1 + RL(Hx1→1) ≤ RL(H),
which is equivalent to

|p1 − y1|+ RL(Hx1→y1) ≤ RL(H). (7)

Therefore, overall we get that

M(RandSOA;S) = |p1 − y1|+ M(RandSOA;S′) (Eq. (5))

≤ |p1 − y1|+ RL(Hx1→y1) (Eq. (6))

≤ RL(H), (Eq. (7))

as required.

5.2 Infinite Trees

So far we have been considering only finite trees. However, in the sequel it will be useful to also
allow infinite trees. In this short subsection, we extend the definition of ET to infinite trees, and
show that the formula for RL holds even when allowing infinite trees.

In this section, whenever we refer to trees, we mean full ordered binary trees, which are
possibly infinite. A tree is shattered by an hypothesis class H if every (possibly infinite) path
starting at the root is realizable by H.

We define a random path in the same way that we defined a random branch in the finite
case: start at the root, and at each internal vertex, choose a random child at uniform, stopping
if a leaf is reached. The result is either a (finite) branch or an infinite path.

We define ET as the expected length of a random path. If the random path is finite almost
surely, then ET is given using the same formula as in the finite case:

ET =
∑

b∈B(T)

|b| · 2−|b|.

Figure 3 gives an example of such a tree. If the random path is infinite with positive probability,
then ET = ∞. It can also happen that ET = ∞ if the random path is finite almost surely.

The formula in Definition 5.1 holds even if we allow infinite trees.

Lemma 5.8. For any non-empty hypothesis class H,

RL(H) =
1

2
sup

T shattered
ET ,

where the supremum is taken over possibly infinite trees.

The proof of the lemma uses a straightforward truncation argument.

21

1

2

3

0

0

1

1

1

Figure 3: An infinite tree with finite expected branch length 2.

Proof. Substituting the definition of RL(H), we need to prove that

1

2
sup

T shattered, finite
ET =

1

2
sup

T shattered
ET .

The left-hand side is clearly at most the right-hand side. We show that they coincide by
constructing, for each infinite shattered tree T , a sequence of finite shattered trees TD such that

ET = lim
D→∞

ETD
. (8)

The tree TD is simply the truncation of T to depth D (that is, all branches of TD have length
at most D). To prove Equation (8), let Λ ∈ N ∪ {∞} be the length of a random path in T , and
let ΛD ∈ {0, . . . , D} be the length of a random path in TD. We can couple the random paths so
that ΛD = min(Λ, D).

If Λ is almost surely finite then

ET =
∑
ℓ∈N

ℓPr[Λ = ℓ].

Equation (8) holds because on the one hand, ETD
≤ ET , and on the other hand,

ETD
≥
∑
ℓ≤D

ℓPr[Λ = ℓ]
D→∞−−−−→ ET .

In contrast, if p := Pr[Λ = ∞] > 0 then Pr[ΛD = D] ≥ p and so ETD
≥ pD → ∞, hence

Equation (8) again holds.

5.3 Trees Maximizing the Expected Branch Length

The sequence of trees (Ti)
∞
i=1 described in Example 6.13 suggests that for “well-behaved classes”,

the supremum in Theorem 5.2 is attained by a specific tree. We show that this is true for finite
classes.

Proposition 5.9. Let H be a finite hypothesis class. Then there exists a tree shattered by H
such that

RL(H) =
1

2
ET .

Proof. Let T be a tree shattered by H. We can label each branch of T by an hypothesis realizing
it. Each branch must be labeled by a different hypothesis, hence the number of branches is at
most |H|. Consequently, there are only finitely many shattered trees, and so the supremum in
the definition of RL(H) is trivially achieved.

22

There are also classes for which the maximum is not attained, even if we allow infinite trees.

Example 5.10 (Maximum is not necessarily attained for infinite classes). We construct an
hypothesis class H over the domain X = {(i, j) ∈ N2 : 1 ≤ i ≤ j}. For each (i, j) ∈ X , the
hypothesis class H contains the function

hi,j(I, J) =

{
1 if J ̸= j,

1[i = I] if J = j.

Let us start by computing L(H). Consider any tree T shattered by H which is not a leaf.
Suppose that the root is labeled by (i, j). Let T0 be the subtree rooted at the branch of the root
labeled 0. Since no hypothesis in H gives 0 to inputs with different second parts, all vertices in
T0 must be labeled by (i′, j). Since no hypothesis in H gives 0 to (i, j) and 1 to two different
(i′, j), we see that the minimum branch length in T0 is at most 1, and so the minimum branch
length in T is at most 2. Hence L(H) ≤ 2. It is easy to construct a tree showing that L(H) = 2.

The subtree T0 contains at most j branches, and each edge labeled 1 terminates at a leaf.
A simple induction on j shows that the expected branch length of such a tree is strictly less
than 2. Indeed, denoting the expected branch length for a given value of j ≥ 2 by Aj, we have
A2 = 1 = 2− 22−2 and Aj = 1 +Aj−1/2 = 1 + 1

2(2− 22−j+1) = 2− 22−j.
Let js be the number of leaves in the subtree rooted at the vertex obtained by starting at the

root of T , taking s times the outgoing edge labeled 1, and then the outgoing edge labeled 0 (if
such a vertex exists). Thus

ET =

S∑
s=0

2−s−1(s+ 1 +Ajs) <

S∑
s=0

2−s−1(s+ 3) ≤ 4,

where S is the maximal value for which js is defined (possibly S = ∞).
On the other hand, we can construct a tree T shattered by H for which ET is arbitrarily close

to 4. Start with an infinite right path (that is, a path in which all edges are labeled 1) labeled
with (1,K), (1,K + 1), (1,K + 2) and so on, for some parameter K. The left branch of a vertex
labeled (1, J) is labeled using (2, J), . . . , (J − 1, J) to construct a tree T ′

J shattered by H with
J − 1 branches, as described in Figure 4. This tree satisfies js = K + s− 1, and so

ET =

∞∑
s=0

2−s−1(s+ 3− 21−K−s)) = 4−O(2−K),

which is arbitrarily close to 4. Thus RL(H) = 2, but every (possibly infinite) tree T shattered by
H satisfies ET /2 < 2.

6 Quasi-balanced Trees

6.1 Definition and Basic Properties

The classical definition of the Littlestone dimension of a class H is the maximum depth of a
balanced (or complete) shattered tree. In contrast, the randomized Littlestone dimension is
defined via quantifying over all shattered trees. Further, in the deterministic case, balanced trees
naturally describe optimal deterministic strategies for the adversary which force any learner to
make a mistake on every example along a branch of the tree.

It is therefore natural to ask whether there is a type of shattered trees, analogous to balanced
trees, which can be used to define the randomized Littlestone dimension. In this subsection, we

23

(1, J)

(2, J)

(3, J)

...

(J − 1, J)

. . .

0

0

0

0

0 1

1

1

1

1

Figure 4: The tree T ′
J defined in Example 5.10.

show that such an analog exists: a type of trees which we call quasi-balanced ; roughly speaking,
quasi-balanced trees can be seen as a fractional relaxation of balanced trees. We further use this
section to prove some useful properties of these trees, which will be used later on.

Informally, quasi-balanced trees are balanced under some weight function defined on the
edges. To formally define quasi-balanced trees, we need to define weight functions for trees.

Let T be a non-empty tree with edge set E. Let W = W(T) be the set of all functions
w : E → [0, 1], such that for every internal node with outgoing edges e0, e1 it holds that
w(e0) + w(e1) = 1. Each function in W is called a weight function for T .

For every branch b ∈ B(T) defined by a sequence of consecutive edges, define the weight of
the branch b with respect to w by w(b) =

∑
e∈bw(e).

The expected weight of a random branch is always half the expected length of a random
branch, as a simple inductive argument shows.

Lemma 6.1. For every non-empty tree T and every weight function w ∈ W(T), the expected
weight of a random branch is ET /2.

Proof. The proof is by induction on the depth of the tree. If T is a leaf then the expected weight
of a random branch is 0 = ET /2. If T is not a leaf, let e0, e1 be the edges emanating from
the root, and let T0, T1 be the corresponding subtrees. Applying the inductive hypothesis, the
expected weight of a random branch in T under w is

w(e0) + ET0/2

2
+

w(e1) + ET1/2

2
=

1 + ET0/2 + ET1/2

2
= ET /2,

using w(e0) + w(e1) = 1 and Equation (3).

This lemma prompts the following definition.

24

Definition 6.2. A tree T is quasi-balanced if it is non-empty and there is a weight function
w ∈ W(T) under which all branches have weight ET /2.

We call ET /2 the weight of the tree, and denote it by λT .

Lemma 6.3. If a tree T is quasi-balanced then there is a unique weight function w under which
all branches have the same weight. Explicitly, if T ′ is a subtree of T whose root is connected via
edges e0, e1 to the subtrees T0, T1, then

w(e0) =
1 + λT1 − λT0

2
and w(e1) =

1 + λT0 − λT1

2
.

Proof. The trees T ′, T0, T1 are necessarily quasi-balanced, and in particular

w(e0) + λT0 = w(e1) + λT1 .

Since w(e0) + w(e1) = 1, we can solve for w(e0), w(e1), obtaining the claimed formula.

Quasi-balanced trees are a generalization of balanced trees: every tree T which is balanced
is also quasi-balanced with weight λT = d/2, where d is the depth of T . This weight is realized
by the (unique) constant weight function that gives weight 1/2 to all edges. The family of
quasi-balanced trees is, however, much broader than the family of balanced trees. (Figure 5
gives an example of a quasi-balanced tree which is not balanced).

Recall the definition of the randomized Littlestone dimension of the class H:

RL(H) =
1

2
sup

T shattered
ET .

It turns out that in this definition, it suffices to take the supremum only over quasi-balanced
trees. This will be easier to see through the characterization of quasi-balanced trees as monotone
trees.

Definition 6.4 (Monotone Trees). A non-empty tree T is weakly monotone if

ET ≥ max{ET0 , ET1},

where T0 and T1 are the subtrees rooted at the children of the root of T . A tree is monotone if
it is non-empty and all of its subtrees are weakly monotone.

It is not hard to see that non-monotone trees need not be considered when computing the
randomized Littlestone dimension.

Lemma 6.5. For any non-empty hypothesis class H,

RL(H) =
1

2
sup

T shattered, monotone
ET .

Proof. Consider a tree T shattered by H which is not monotone. Then there exists a vertex v
such that ETv < ETw , where Tw is a tree rooted at a child of v. If we replace the subtree rooted
at v with the subtree Tw, we get a tree which is also shattered by H, and has higher expected
branch length.

Repeating this process finitely many times, for each tree T shattered by H we obtain a
monotone tree T ′ shattered by H satisfying ET ′ ≥ ET , and the lemma follows.

The following theorem asserts that monotone and quasi-balanced trees are indeed equivalent.

25

Theorem 6.6. A tree is quasi-balanced if and only if it is monotone.

Corollary 6.7. For any non-empty hypothesis class H,

RL(H) =
1

2
sup

T shattered, quasi-balanced
ET .

To prove Theorem 6.6, we use the following simple observation.

Observation 6.8. Let T be a non-empty tree. Then T is weakly monotone if and only if
|ET0 − ET1 | ≤ 2, where T0 and T1 are the subtrees rooted at the children of the root of T .

Proof. Equation (3) states that 2ET = 2 + ET0 + ET1 , and so ET0 ≤ ET is equivalent to
ET0 −ET1 ≤ 2. Similarly, ET1 ≤ ET is equivalent to ET1 −ET0 ≤ 2. Hence T is weakly monotone
iff |ET0 − ET1 | ≤ 2.

Proof of Theorem 6.6. An empty tree is neither quasi-balanced nor monotone. Suppose therefore
that we are given a non-empty tree T . We prove the equivalence by proving both implications
separately.

Monotone =⇒ Quasi-balanced. The proof is by induction on the depth of the tree. A
tree of depth 0 (the base case) is quasi-balanced with weight ET /2 = 0. For the induction step,
let T0, T1 be the subtrees rooted at the root’s children. They are clearly monotone, and so by
induction, there are weight functions w0 ∈ W(T0) and w1 ∈ W(T1) under which all branches
in T0 have weight λT0 = ET0/2 and all branches in T1 have weight λT1 = ET1/2.

Let e0, e1 be the edges connecting the root of T to the roots of T0, T1, respectively. Define a
weight function w ∈ W(T) by defining w(e) = w0(e) if e ∈ T0, w(e) = w1(e) if e ∈ T1,

w(e0) =
1 + λT1 − λT0

2
, and w(e1) =

1 + λT0 − λT1

2
.

Clearly w(e0) + w(e1) = 1. Observation 6.8 implies that w(e0), w(e1) ∈ [0, 1], and so indeed
w ∈ W(T). Since w(e0)+λT0 = w(e1)+λT1 , the weight function w shows that T is quasi-balanced.

Quasi-balanced =⇒ Monotone. The proof is by induction on the depth of the tree. A
tree of depth 0 is monotone. For the induction step, we first observe that every proper subtree
of T is quasi-balanced, and so monotone by the inductive hypothesis. Hence it suffices to show
that T is weakly monotone.

Let w be the unique weight function for T under which each branch has weight λT . Let e0, e1
be the edges connecting the root of T to the two subtrees T0, T1. According to Lemma 6.3, the
weights of these edges are

w(e0) =
1 + λT1 − λT0

2
and w(e1) =

1 + λT0 − λT1

2
.

Since the weights are non-negative, we deduce that |λT0 − λT1 | ≤ 1, and so |ET0 −ET1 | ≤ 2. We
conclude that T is weakly monotone by Observation 6.8.

6.2 A Concentration Lemma for Quasi-Balanced Trees

Another interesting property of quasi-balanced trees is that the length of a random branch
concentrates around its expectation. This property will be important for deriving tight bounds
in Section 9.

26

Proposition 6.9 (Concentration of branch lengths). Let T be a quasi-balanced tree, and let X
be the length of a random branch. Then for any ϵ > 0,

Pr[X < (1− ϵ)ET] ≤ exp(−ϵ2ET /4) and Pr[X > (1 + ϵ)ET] ≤ exp(−ϵ2ET /4(1 + ϵ)).

Proof. If T is a single leaf then the result trivially holds since there is a single random branch.
Therefore we can assume that T is not a single leaf, and in particular, ET ≥ 1.

Let b0, b1, b2, . . . be an infinite sequence of random coin tosses. We can choose a random
branch of T as follows. Let v0 be the root of T . For i ∈ N, if vi is not a leaf, then vi+1 is
obtained by following the edge labeled bi. Otherwise, we define vi+1 = vi. The resulting random
branch has exactly the same distribution that we have been considering so far.

Let Li be the expected length of the branch given b0, . . . , bi−1. This is an exposure martingale,
as defined in Section 4.

In order to apply Azuma’s inequality, we need to bound the random difference |Li −Li+1|. If
vi is a leaf, then Li+1 = Li. Otherwise, let T ′ be the subtree rooted at vi, and let T ′

0, T
′
1 be the

subtrees rooted at the children of vi. Thus Li+1 is either λ0 := i+ 1 +ET ′
0
or λ1 := i+ 1 +ET ′

1
,

depending on the value of bi. Moreover, Li = (λ0 + λ1)/2 is the average of these two values.
Theorem 6.6 shows that T ′ is weakly monotone, and so Observation 6.8 shows that |ET ′

0
−

ET ′
1
| ≤ 2. Consequently,

|Li − Li+1| =
1

2
|λ0 − λ1| ≤ 1.

The definition of Li implies that Lβ = X for all β ≥ X. In particular, if X < (1− ϵ)ET then
L⌈ET ⌉ < (1− ϵ)ET . Applying Azuma’s inequality and using L0 = ET , it follows that

Pr[X < (1− ϵ)ET] ≤ Pr[L⌈ET ⌉ − ET < −ϵET] ≤ exp

(
−ϵ2E2

T

2⌈ET ⌉

)
≤ exp(−ϵ2ET /4),

where the final inequality uses ⌈ET ⌉ ≤ ET + 1 ≤ 2ET .
The definition of Li also implies that Lβ ≥ β whenever β ≤ X. In particular, if X > (1+ϵ)ET

then L⌈(1+ϵ)ET ⌉ ≥ ⌈(1 + ϵ)ET ⌉. Therefore

Pr[X > (1+ϵ)ET] ≤ Pr[L⌈(1+ϵ)ET ⌉−ET > ϵET] ≤ exp

(
−ϵ2E2

T

2⌈(1 + ϵ)ET ⌉

)
≤ exp(−ϵ2ET /4(1+ϵ)),

using (1 + ϵ)ET ≥ 1 as before.

6.3 Applications of Quasi-Balanced Trees

We now give two applications of quasi-balanced trees. In Section 6.3.1 we show that they can be
used to give explicit strategies for the adversary. In Section 6.3.2 we provide an alternative proof
for the folklore inequality M⋆(H) ≤ M⋆D(H) ≤ 2M⋆(H), which appears implicitly in [BDPSS09].

6.3.1 Optimal Online Adversarial Strategies

Lemma 5.3 states that for every learning rule Lrn there exists a realizable sequence S so that
M(Lrn;S) ≥ ET /2. In the proof we showed that if S is chosen according to a random branch,
then E[M(Lrn;S)] ≥ ET /2.

Quasi-balanced trees allow us to explicitly describe strategies which approach ET /2.

Lemma 6.10. Let H be a non-empty hypothesis class, and let T be a quasi-balanced tree shattered
by H, as witnessed by w ∈ W(T). Let Lrn be an arbitrary learning rule. Consider the following
strategy for the adversary, which traverses T from the root to a leaf, and acts as follows at step
i, when at a node vi with outgoing edges e0, e1:

27

Tree T (q)

x1

x2

0, w = 1/4

0, w = 1/2 1, w = 1/2

1, w = 3/4

Figure 5: The tree T (q) is a quasi-balanced tree with weight λT (q) = 3/4 = ET (q)/2, which
is realized by the weight function w written on the edges. The internal nodes are associated
with instances x1, x2. The function w guides the adversary’s strategy: Determine x1 to be the
instance in the first round. If p1 ≤ 1/4, determine y1 = 1 and finish the game. Otherwise, set
y1 = 0, determine the instance in the second round to be x2, and finish the game after the
second round. Either way, the learner will suffer a loss of at least 3/4 in total.

1. Send the learner the label xi of vi, receiving the answer pi ∈ [0, 1].

2. If pi ≥ w(e0) then set the true label to 0 and proceed accordingly.

3. Otherwise set the true label to 1 and proceed accordingly.

Then the resulting sequence S of examples is realizable by H and satisfies M(Lrn;S) ≥ ET /2.

Proof. It is clear that S is realizable. If pi ≥ w(e0) then the loss incurred by the learner at step
i is |pi − 0| ≥ w(e0). Otherwise, it is |1− pi| ≥ |1− w(e0)| = w(e1). Since every path in T has
weight exactly ET /2, it follows that the loss of the learner is at least ET /2.

An example can be found in Figure 5.

6.3.2 Deterministic vs Randomized Online Learning

Quasi-balanced trees can be used to give an alternative proof for the following well-known
relation between the randomized and deterministic mistake bounds.

Proposition 6.11 ([BDPSS09]). Let H ̸= ∅ be an hypothesis class. Then

M⋆(H) ≤ M⋆D(H) ≤ 2M⋆(H).

Classic proof. It is obvious that M⋆(H) ≤ M⋆D(H), because a deterministic learner is also a special
case of a randomized learner.

The inequality M⋆D(H) ≤ 2M⋆(H) follows by a simple derandomization which transforms any
randomized learner Lrn to a deterministic learner LrnD whose mistake bound is at most twice
as large. Specifically, LrnD is defined as follows. Let S be an input sequence of examples, and
let pi denote the prediction of Lrn on the i’th example in S. LrnD predicts 0 if pi ≤ 1/2 and 1
otherwise. Notice that whenever LrnD makes a mistake, the loss of Lrn increases by at least 1/2.
Thus, the total number of mistakes made by LrnD is at most twice the loss of Lrn.

Using Theorem 5.2 we can give an alternative proof of Proposition 6.11, which uses the
original characterization for the deterministic setting from [Lit88]. Specifically, we can formulate
Proposition 6.11 in terms of the Littlestone and randomized Littlestone dimensions, and prove it
directly using properties of quasi-balanced trees.

The heart of the proof is the following simple lemma, showing that the expected branch
length of a quasi-balanced tree is at most twice the minimum branch length.

28

Proposition 6.12. If T is a quasi-balanced tree then ET ≤ 2mT , where mT is the minimum
length of a branch of T .

Proof. The proof is by induction on the depth of T . If T consists of a single vertex then
ET = mT = 0. Otherwise, let T0, T1 be the subtrees rooted at the children of the root of T .
Applying Equation (3), we get

ET = 1 + ET0/2 + ET1/2 = 1 +min(ET0 , ET1) + |ET0 − ET1 |/2.

Observation 6.8 shows that |ET0 −ET1 |/2 ≤ 1, and so applying the inductive hypothesis, we see
that

ET ≤ 2 + 2min(mT0 ,mT1) = 2mT .

We can now give the alternative proof of Proposition 6.11.

Alternative proof of Proposition 6.11. Since M⋆(H) = RL(H) by Theorem 5.2 and M⋆D(H) = L(H)
by Theorem 4.1, it suffices to prove that

RL(H) ≤ L(H) ≤ 2RL(H).

The inequality L(H) ≤ 2RL(H) easily follows from the definitions:11

L(H) = sup
T shattered

mT and RL(H) =
1

2
sup

T shattered
ET .

Indeed, the expected depth of a random branch is always at least the minimum depth of a
branch.

In order to prove the inequality RL(H) ≤ L(H), we use Corollary 6.7, which allows us to
restrict the trees in the definition of RL(H) to be quasi-balanced. The inequality then immediately
follows from Proposition 6.12.

Unlike Theorem 6.6, the property of quasi-balanced trees proved in Proposition 6.12 is not a
characterization of quasi-balanced trees. Figure 6 gives an example for a tree that satisfies this
property but is not quasi-balanced.

Both inequalities in Proposition 6.11 can be tight, as the following examples demonstrate.

Example 6.13 (class H1 with RL(H1) = L(H1)). Let H1 be the class of singletons over N. That
is, X = N and H1 = {hi : i ∈ N}, where hi(j) = 1 if and only if i = j. Any tree shattered by H1

has minimum branch length 1 (since no hypothesis satisfies h(i) = h(j) = 1 for i ̸= j), hence
L(H1) = 1. In contrast, the tree Ti in Figure 7 is shattered by H1 and has expected branch length
2− 2−(i−1), and so RL(H1) ≥ 1.

In Section 5.2 we show how to extend the definition of randomized Littlestone dimension to
infinite trees. We can then replace the trees Ti with a single infinite tree T∞ shattered by H1

whose expected branch length is exactly 2.

Example 6.14 (Class H2 with RL(H2) = L(H2)/2). Let X = {1} and let H2 = {h0, h1}, where
hℓ(1) = ℓ. There are only two non-empty trees shattered by H2: a leaf, and the complete binary
tree of depth 1 whose root is labeled 1. Hence L(H2) = 1 and RL(H2) = 1/2.

11Notice that in the classic proof, the other inequality is the trivial one.

29

The tree T (nq)

Figure 6: The minimal branch in T (nq) is of length 2, while ET (nq) = 3.5. Therefore it holds
that ET (nq) is at most twice the minimal branch length. Since every proper subtree of T (nq) is
complete, this also holds for all proper subtrees. Nevertheless, T (nq) is not quasi-balanced, since
it is not monotone.

1

2

3

...

i

0

0

0

0

0 1

1

1

1

1

Figure 7: The tree Ti defined in Example 6.13.

30

7 Bounded Horizon

So far we have not put any restrictions on the number of rounds. However, in many circumstances
we are interested in the online learning game when the number of rounds is bounded. We model
this by assuming that the learner knows an upper bound on the number of rounds. We define
M⋆(H,T) to be the optimal randomized mistake bound when the number of rounds is at most T.

We can generalize Theorem 5.2 to this setting. The required notion of randomized Littlestone
dimension is

RL(H,T) =
1

2
sup

T shattered
depth(T)≤T

ET .

The bounded randomized Littlestone dimension gives the precise mistake bound in this
setting.

Theorem 7.1 (Optimal Randomized Mistake Bound with Finite Horizon). Let H be an hypothesis
class, and let T ∈ N. Then,

M⋆(H,T) = RL(H,T).

We prove Theorem 7.1 in Section 7.1. This theorem immediately suggests the following
questions:

1. How many rounds are needed in order for the adversary to guarantee that the loss of the
learner is at least RL(H)− ϵ?
We prove in Section 7.2 that 2RL(H) + O(

√
RL(H) log(RL(H)/ϵ)) rounds always suffice,

and O(log(1/ϵ)) rounds suffice as long as ϵ is small enough. We discuss the optimality of
these bounds in Section 7.4.

2. What can we say about the loss of the learner when there are fewer than 2RL(H) rounds?
A trivial upper bound on RL(H,T) is T/2. In Section 7.3 we show that this bound is
nearly optimal when T ≤ 2RL(H).

The proofs of these results use concentration bounds on the depth of quasi-balanced trees,
which we prove in Section 6.2.

7.1 Proof of Theorem 7.1

In this section we indicate how to generalize the proof of Theorem 5.2 to the finite horizon
setting, proving Theorem 7.1.

The lower bound RL(H,T) ≤ M⋆(H,T) follows directly from the statement of Lemma 5.3,
since the length of S is at most depth(T).

For the upper bound, we use a straightforward modification of algorithm RandSOA, which
appears in Figure 8.

We start by extending Observation 5.5: if H is a non-empty hypothesis class and T > 0 then

RL(H,T) =
1

2
max
x∈X

(
1 + RL(Hx→0,T− 1) + RL(Hx→1,T− 1)

)
.

The proof is identical. Since there are only finitely many unlabeled trees of depth at most T, we
can replace the supremum with a maximum.

The next step is to generalize Lemma 5.6, which now states that for every hypothesis class
H, instance x ∈ X , and T > 0, there exists p ∈ [0, 1] so that

p+ RL(Hx→0,T− 1) ≤ RL(H,T) and (1− p) + RL(Hx→1,T− 1) ≤ RL(H,T).

31

BoundedRandSOA: Bounded Randomized SOA

Input: An hypothesis class H and number of rounds T.
Initialize: Let V (1) = H.

For i = 1, 2, . . . ,T

1. Receive xi.

2. Predict pi ∈ [0, 1] such that the value

max
{
pi + RL

(
V

(i)
xi→0,T− i

)
, 1− pi + RL

(
V

(i)
xi→1,T− i

)}
is minimized, where V

(i)
xi→b = {h ∈ V (i) : h(xi) = b}.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 8: BoundedRandSOA is a bounded variant of RandSOA.

The proof is identical, using the generalized Observation 5.5.
Finally, we prove the following generalization of Lemma 5.7: for every hypothesis class H,

any parameter T, and any realizable input sequence S of length at most T,

M(BoundedRandSOA;S) ≤ RL(H,T).

The proof is identical, using the generalized Lemma 5.6.

7.2 Approaching RL(H)

As a simple consequence of the concentration bound proved in Proposition 6.9, we show that we
can approach RL(H) using relatively shallow trees, quantified as follows.

Proposition 7.2. Let H be a non-empty hypothesis class with finite randomized Littlestone
dimension RL(H).

For every ϵ > 0 there is a tree T shattered by H satisfying ET /2 ≥ RL(H)− ϵ whose depth is
at most

2RL(H) +O

(√
RL(H) log

RL(H)

ϵ
+ log

1

ϵ

)
= 2RL(H) +O

(√
RL(H) log

RL(H)

ϵ

)
.

Given Lemma 6.10, this means that the adversary can force the learner to suffer a loss of
RL(H)− ϵ after only 2RL(H) +O(

√
RL(H) log(RL(H)/ϵ) + log(1/ϵ)) rounds. In contrast, at least

2RL(H)− 2ϵ rounds are clearly needed, since a learner who predicts 1/2 at each round suffers a
loss of R/2 after R rounds.

We prove Proposition 7.2 via the following technical estimate.

32

Lemma 7.3. Let T be a monotone tree, and let T≤k result from truncating it to the first k
levels (all branches in T≤k have length at most k). If k ≥ ET then

ET≤k ≥ ET − 15
√

ET exp

(
−(k − ET)

2

8ET

)
− 10 exp

(
−k − ET

8

)
.

Proof. Let X be the length of a random branch of T . Using X, we can express the difference
between ET≤k and ET explicitly:

ET − ET≤k =
∞∑
t=k

Pr[X > t].

Applying Proposition 6.9, we deduce that the difference is at most

∆ :=
∞∑
t=k

exp

(
−(t− ET)

2

4t

)
≤ exp

(
−(k − ET)

2

4k

)
+

∫ ∞

k
exp

(
−(t− ET)

2

4t

)
dt.

If k ≤ 2ET then

∆ ≤ exp

(
−(k − ET)

2

4k

)
+

∫ 2ET

k
exp

(
−(t− ET)

2

8ET

)
dt+

∫ ∞

2ET

exp

(
− t− ET

8

)
dt

≤ 5
√

ET exp

(
−(k − ET)

2

8ET

)
+ 8 exp

(
−ET

8

)
≤ 15

√
ET exp

(
−(k − ET)

2

8ET

)
,

using the well-known Gaussian tail bound,∫ ∞

k
e−(t−µ)2/2σ2

dt =
√
2πσ2 Pr[N(µ, σ) > k] ≤

√
2πσ2e−(k−µ)2/2σ2

(k ≥ µ),

to bound the first integral.
If k ≥ 2ET then

∆ ≤ exp

(
−k − ET

8

)
+

∫ ∞

k
exp

(
− t− ET

8

)
dt ≤ 9 exp

(
−k − ET

8

)
.

We can now prove Proposition 7.2.

Proof of Proposition 7.2. Applying Lemma 6.5, we can find a monotone tree T shattered by H
such that 2RL(H)− ϵ/2 ≤ ET ≤ 2RL(H). Let

k = ET +

√
8ET log

60
√
ET

ϵ
+ 8 log

20

ϵ
= ET +O

(√
ET log

ET

ϵ
+ log

1

ϵ

)
.

Lemma 7.3 implies that ET≤k ≥ ET − ϵ/2, and so ET≤k ≥ 2RL(H)− ϵ.

We discuss the optimality of Proposition 7.2 in Section 7.4.

33

7.3 Mistake Bound for Few Rounds

Another truncation argument allows us to estimate RL(H,T) for small T.

Proposition 7.4. Let H be a non-empty hypothesis class with finite randomized Littlestone
dimension RL(H).

If T ≤ RL(H) then RL(H,T) = T/2.
If T ≤ 2RL(H) then

T

2
−O(

√
T logT) ≤ RL(H,T) ≤ T

2
.

Furthermore, if T ≤ 2RL(H)−
√
8RL(H) ln RL(H) then

T

2
− 1 < RL(H,T) ≤ T

2
,

and if T ≥ 2RL(H)−
√

8RL(H) ln RL(H) then

RL(H)−O
(√

RL(H) log RL(H)
)
≤ RL(H,T) ≤ RL(H).

Proof. A learner that always predicts 1/2 suffers a loss of exactly 1/2 each round, showing that
RL(H,T) ≤ T/2 for each T. In contrast, if T is a tree shattered by H then Theorem 7.1 shows
that RL(H,T) ≥ ET≤T/2, and we will use this to give lower bounds on RL(H,T).

Suppose first that T ≤ RL(H). Proposition 6.12 shows that mT ≥ ET /2. If ET is close
enough to 2RL(H) then mT ≥ RL(H) (since mT is an integer), and so T≤T is a complete tree of
depth T. This shows that RL(H,T) ≥ T/2.

In order to prove the remaining results, suppose that T ≤ 2RL(H), and consider a tree T
shattered by H satisfying ET = 2RL(H)− δ ≥ T. Proposition 6.9 shows that a random branch

of T≤T has depth T with probability at least 1− exp
(
− (ET−T)2

4ET

)
, and so

RL(H,T) ≥
(
1− exp

(
−(ET −T)2

4ET

))
· T
2

−→
(
1− exp

(
−(2RL(H)−T)2

8RL(H)

))
· T
2
,

where the limit is taken along a sequence of trees shattered by H and satisfying ET → 2RL(H).
If T ≤ T0 := 2RL(H)−

√
8RL(H) ln RL(H) then this gives

RL(H,T) ≥
(
1− 1

RL(H)

)
· T
2

>
T

2
− 1.

If T0 ≤ T ≤ 2RL(H) then

RL(H,T) ≥ RL(H,T0) ≥
T0 − 2

2
≥ T− 2

2
−
√
8RL(H) ln RL(H) ≥ T

2
−O(

√
T logT).

Finally, if we only assume that T ≥ T0 then

RL(H,T) ≥ RL(H,T0) ≥
T0 − 2

2
≥ RL(H)−

√
8RL(H) ln RL(H)− 1.

7.4 Lower Bounds

Let H by an hypothesis class. If there exists a (finite) tree T shattered by H and satisfying
ET /2 = RL(H), then Proposition 7.2 is not tight. Proposition 5.9 shows that such a tree always
exists when H is finite. Conversely, when H is infinite, we can show that an additive factor
proportional to log(1/ϵ) is necessary in Proposition 7.2.

We start by showing that RL(H) ≥ 1 if H is infinite.

34

Lemma 7.5. Let H be an hypothesis class. If |H| ≥ k then there is a tree T shattered by H
such that ET ≥ 2− 22−k. In particular, if H is infinite then RL(H) ≥ 1.

Proof. The proof is by induction on k. If k = 1 then there is nothing to prove. Otherwise,
|H| ≥ 2, and so there exists an instance x such that Hx→0,Hx→1 ̸= ∅. If |Hx→y| = ky, then
using the induction hypothesis, we construct a tree T shattered by H such that

ET ≥ 1 +
2− 22−k0

2
+

2− 22−k1

2
.

By convexity, the right-hand side is minimized when k0 = 1 and k1 = k − 1, and so ET ≥
2− 22−k.

We can now show that when H is infinite, the O(log(1/ϵ)) term in Proposition 7.2 is necessary.

Proposition 7.6. Let H be an infinite hypothesis class such that RL(H) < ∞.
If T is a tree shattered by H such that ET /2 ≥ RL(H)− ϵ, then depth(T) ≥ log(1/ϵ).

Proof. Construct a branch v0, . . . , vℓ in T such that for each i, the set of hypotheses H(vi)
consistent with the path from v0 to vi is infinite. This is possible since if H(vi) is infinite and vi
is labeled x, then at least one of H(vi)x→0,H(vi)x→1 is infinite.

Applying Lemma 7.5, we can extend T to another tree T ′ shattered by H by hanging from
vℓ a tree whose expected branch length is arbitrarily close to 2. This shows that

RL(H) ≥ ET ′/2 ≥ ET /2 + 2−ℓ ≥ ET /2 + 2−depth(T).

This proposition is tight for the hypothesis class consisting of all h : N → {0, 1} such that
|h−1(1)| ≤ 1.

We now identify a family of hypothesis classes for which we can improve the lower bound
from Ω(log(1/ϵ)) to 2RL(H) + Ω(log(1/ϵ)).

Definition 7.7 (Strongly Infinite Hypothesis Class). An hypothesis class H is strongly infinite
if it is infinite and for every (x1, y1), . . . , (xn, yn) ∈ X × Y , the hypothesis class Hx1→y1,...,xn→yn

is either infinite or contains at most one hypothesis.

For example, the hypothesis class consisting of all h : N → {0, 1} such that |h−1(1)| ≤ k is
strongly infinite for all k ≥ 1.

For such classes, we can strengthen Proposition 7.6.

Proposition 7.8. Let H be a strongly infinite hypothesis class such that RL(H) < ∞.
For every ϵ > 0, any tree T shattered by H and satisfying ET /2 ≥ RL(H)− ϵ has depth at

least 2RL(H) + Ω(log(1/ϵ)).

Proof. Let T be a tree shattered by H and satisfying ET /2 ≥ RL(H)− ϵ.
We can associate each vertex v in T with the example sequence S(v) = (x1, y1), . . . , (xr, yr)

leading to it. We define H(v) = Hx1→y1,...,xr→yr .
If v is a leaf of T such that H(v) is infinite, then we can find an instance xv such that

S(v), (xv, 0) and S(v), (xv, 1) are both realizable by H. Let T ′ be the extension of T obtained
by labelling each such leaf v by xv and adding two leaves. The tree T ′ is also shattered by H,
and so RL(H) ≥ ET ′/2. On the other hand, RL(H) ≤ ET /2 + ϵ.

In order to relate ET ′ to ET , let v0, . . . , vL be a random branch in T . Then

ET ′ = ET + Pr[H(vL) is infinite].

35

Since ET ′/2 ≤ RL(H) ≤ ET /2 + ϵ, this shows that

1

2
Pr[H(vL) is infinite] ≤ ϵ. (9)

In order to complete the proof, we relate the depth of T to the probability above.
If i < L and H(vi) is infinite then H(vi+1) is infinite with probability at least 1/2. Therefore

for every ℓ ∈ N,

Pr[H(vL) is infinite] ≥
Pr[L ≥ ℓ and H(vℓ) is infinite]

2depth(T)−ℓ
.

If L > ℓ then |H(vℓ)| ≥ 2, and so H(vℓ) is infinite since H is strongly infinite. Therefore

Pr[H(vL) is infinite] ≥
Pr[L > ℓ]

2depth(T)−ℓ
. (10)

We can lower bound Pr[L > ℓ] using Markov’s inequality:

Pr[L > ℓ] = 1− Pr[depth(T)− L ≥ depth(T)− ℓ] ≥ 1− depth(T)− ET

depth(T)− ℓ
.

Choosing ℓ = ⌊2ET − depth(T)⌋, this probability is at least 1/2, and so Eq. (10) gives

Pr[H(vL) is infinite] ≥
1

22depth(T)−2ET+2
≥ 1

22depth(T)−4RL(H)+4ϵ+2
.

Substituting this in Eq. (9) and rearranging, we conclude that

2depth(T)− 4RL(H)− 4ϵ+ 3 ≥ log(1/ϵ),

from which the proposition immediately follows.

8 Mistake Bounds in the k-Realizable Setting

So far we have considered online learning when the adversary is restricted to choose labels
which are consistent with one of the hypotheses in the hypothesis class, a setting known as the
realizable setting. This is a quite restrictive assumption, and there are many ways to relax it.

In this section we concentrate on the k-realizable setting, in which the answers of the adversary
are consistent with one of the hypotheses in the class up to at most k mistakes. Our goal is to
characterize the optimal mistake bounds in this setting, for both deterministic and randomized
learners, generalizing Theorems 4.1 and 5.2. Our characterizations are based on k-shattered
trees, in which each branch is consistent with one of the hypotheses in the class up to at most k
mistakes.

If all instances in a sequence of examples are distinct, then the sequence is k-realizable by
H if and only if it is realizable by the k-expansion of H, consisting of all hypotheses h′ which
disagree with some hypothesis h ∈ H on at most k instances. However, this need not be the
case. For example, the sequence (x, 0), (x, 1) is 1-realizable by the hypothesis class H consisting
of all constant functions.

Nevertheless, the arguments in this section are very similar to their counterparts in the
realizable setting.

To complete the picture, we briefly discuss the Perceptron algorithm in this setting in
Section 8.7.

36

8.1 Weighted Hypothesis Classes

While we are interested mainly in the k-realizable setting, we consider a more general setting in
which the number of allowed mistakes can depend on the hypothesis. This will be useful in the
subsequent proofs.

A weighted hypothesis class W is a collection of pairs (h,w), where h : X → Y is an hypothesis
and w ∈ N is the allowed number of mistakes (possibly zero). Furthermore, all hypotheses
are distinct (that is, W cannot contain two different pairs (h,w1), (h,w2)). An input sequence
(x1, y1), . . . , (xt, yt) is realizable by a weighted hypothesis class W if there exists (h,w) ∈ W such
that h(xi) ̸= yi for at most w many examples in the sequence. A tree is shattered by W if each
of its branches is realized by W.

Given an hypothesis class H, a learning rule which observes the labeled example (x, y)
can restrict itself to Hx→y = {h ∈ H : h(x) = y}. The corresponding operation for weighted
hypothesis classes is

Wx→y = {(h,w) : (h,w) ∈ W, h(x) = y} ∪ {(h,w − 1) : (h,w) ∈ W, h(x) ̸= y, w > 0}.

In words, we decrease the allowed number of mistakes for each hypothesis inconsistent with the
given example (x, y), removing hypotheses which has zero mistakes left.

For every weighted hypothesis class W , we define its Littlestone dimension and its randomized
Littlestone dimension by

L(W) = sup
T shattered

mT and RL(W) =
1

2
sup

T shattered
ET ,

where the supremum is taken over all trees shattered by W. As in the realizable setting, we
define L(∅) = RL(∅) = −1 for convenience.

Our main results in this section extend Theorems 4.1 and 5.2 to this more general setting.

Theorem 8.1 (Optimal Deterministic Mistake Bound). Let W be a weighted hypothesis class.
Then,

M⋆D(W) = L(W).

Theorem 8.2 (Optimal Randomized Mistake Bound). Let W be a weighted hypothesis class.
Then,

M⋆(W) = RL(W).

We prove these theorems in the following subsections, making use of the following fundamental
observation, which follows directly from the definitions:

Observation 8.3. Let W be a weighted hypothesis class. The sequence (x1, y1), . . . , (xt, yt) is
realizable by W iff the sequence (x2, y2), . . . , (xt, yt) is realizable by Wx1→y1.

Similarly, let T is a tree whose root is labeled by x, and let T0, T1 be the subtrees rooted at the
children of the root. Then T is realizable by W iff T0 is realizable by Wx→0 and T1 is realizable
by Wx→1.

When the weighted hypothesis class is finite, the randomized Littlestone dimension is achieved
exactly by some (potentially infinite) tree, as we show in Section 8.6.

37

The k-realizable setting. Let H be an hypothesis class, and let k ∈ N. A sequence of
examples S = {(xi, yi)}ti=1 is k-realizable by H if there exists h ∈ H such that h(xi) ̸= yi for at
most k indices i. We denote the corresponding mistake bounds by M⋆(H, k), M⋆D(H, k). These are
defined just as in the realizable setting, the only difference being that the sequence of examples
provided by the adversary need only be k-realizable by H.

We say that a tree is k-shattered by H if every branch is k-realizable by H. The corresponding
deterministic and randomized k-Littlestone dimension of a class H are

Lk(H) = sup
T k-shattered

mT and RLk(H) =
1

2
sup

T k-shattered
ET .

If we define WH,k = {(h, k) : h ∈ H}, then a sequence of examples is k-realizable by H if
it is realizable by WH,k. In other words, the k-realizable setting is a special case of weighted
hypothesis classes, where all weights are equal to k. Therefore we immediately conclude the
following theorems, by applying the preceding theorems to WH,k:

Theorem 8.4 (Optimal Deterministic Mistake Bound). Let H be an hypothesis class, and let
k ∈ N. Then,

M⋆D(H, k) = Lk(H).

Theorem 8.5 (Optimal Randomized Mistake Bound). Let H be an hypothesis class, and let
k ∈ N. Then,

M⋆(H, k) = RLk(H).

Using the classic lower bounds of [LW94,BDPSS09] and recent results of [ABED+21], we
can bound the optimal mistake bound in terms of the realizable Littlestone dimension:

Theorem 8.6. Let H be an hypothesis class with at least two hypotheses, and let k ∈ N. Then,

M⋆(H, k) = k +Θ
(√

k · L(H) + L(H)
)
.

We prove this result in Section 8.4. Note that since L(H) and RL(H) differ by at most a
constant factor, the theorem still holds if we replace L(H) by RL(H).

Using the experts algorithm of [KvE15], we can construct an algorithm which works in the
adaptive setting, that is, without knowledge of k:

Theorem 8.7. Let H be an hypothesis class. There is an algorithm Squint such that for every
input sequence S which is k⋆-realizable by H,

M(Squint;S) ≤ M⋆(H, k⋆) +O
(√

M⋆(H, k) log((k⋆ + 1) log M⋆(H, k⋆))
)
.

Furthermore, Squint is adaptive, that is, it has no knowledge of k⋆.

We describe and analyze the algorithm in Section 8.5.

8.2 Proof of Optimal Deterministic Mistake Bound

The case W = ∅ holds by definition. Therefore we assume that W ̸= ∅. The lower bound
“L(W) ≤ M⋆D(W)” boils down to the following lemma:

Lemma 8.8. Let W be a weighted hypothesis class, and let T be a finite tree which is shattered
by W. Then, for every deterministic learning rule Lrn there exists a realizable sequence S so
that M(Lrn;S) ≥ mT . Furthermore, S corresponds to one of the branches in T .

38

WeightedSOA

Input: A weighted hypothesis class W.
Initialize: Let V (1) = W.

for i = 1, 2, . . .

1. Receive xi.

2. Predict
ŷi = argmax

b∈Y
L
(
V

(i)
xi→b

)
.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 9: The weighted version of SOA.

Proof. We construct the sequence S by traversing T , starting at the root v1. At step i, we send
Lrn the instance xi labelling vi. If the learner predicts ŷi, we set the true label to yi = 1− ŷi,
and let vi+1 be the vertex obtained from vi by following the leaf labeled yi. We stop once the
process reaches a leaf.

By construction, S corresponds to one of the branches of T , and the number of mistakes is
|S| ≥ mT . Since T is shattered by W, then S is realizable by W.

By applying the lemma on every shattered tree and taking the supremum, we conclude the
lower bound:

Corollary 8.9 (Lower bound). For every weighted hypothesis class W it holds that M⋆D(W) ≥
L(W).

We now turn to prove the upper bound “L(W) ≥ M⋆D(W)”. This is achieved via the
WeightedSOA learning rule, depicted in Figure 9.

Lemma 8.10 (Upper bound). Let W be a non-empty weighted hypothesis class. The WeightedSOA
learner described in Figure 9 has the mistake bound

M(WeightedSOA;S) ≤ L(W)

for every input sequence S realizable by W.

Proof. We will show that each time thatWeightedSOAmakes a mistake, the Littlestone dimension
drops by at least 1. That is, if ŷi ̸= yi then L(V (i+1)) < L(V (i)). Since the Littlestone dimension
is always non-negative, it follows that WeightedSOA makes at most L(W) mistakes.

Suppose that ŷi ̸= yi yet L(V (i+1)) = L(V (i)). The choice of ŷi shows that L(V
(i)
xi→0) =

L(V
(i)
xi→1) = L(V (i)). This is, however, impossible. Indeed, take trees T0, T1 shattering V

(i)
xi→0, V

(i)
xi→1

with mT0 = mT1 = L(V (i)). Observation 8.3 shows that the tree T whose root is labeled xi and in
which T0, T1 are the subtrees of the root’s children is shattered by V (i). Since mT = L(V (i)) + 1,
we reach a contradiction.

39

WeightedRandSOA

Input: A weighted hypothesis class W.
Initialize: Let V (1) = W.

for i = 1, 2, . . .

1. Receive xi.

2. Predict pi ∈ [0, 1] such that the value

max
{
pi + RL

(
V

(i)
xi→0

)
, 1− pi + RL

(
V

(i)
xi→1

)}
is minimized.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 10: The weighted version of RandSOA.

8.3 Proof of Optimal Randomized Mistake Bound

The proof of the optimal mistake bound in the randomized setting, Theorem 8.2, is very similar
to the proof of its counterpart in the realizable setting, Theorem 5.2.

The proof of the lower bound “RL(W) ≤ M⋆(W)” is virtually identical to the proof of
Lemma 5.3.

The proof of the upper bound “RL(W) ≥ M⋆(W)” uses WeightedRandSOA, the weighted
counterpart of RandSOA, which appears in Figure 10. The proof of Lemma 5.7 extends, with
virtually no changes, to show that M(WeightedRandSOA;S) ≤ RL(W) for every input sequence S
realizable by W.

8.4 Explicit Bounds in Terms of Littlestone Dimension

Here we prove Theorem 8.6, which bounds M⋆(H, k) in terms of k and L(H) (or RL(H)). In the
proof, we use the notation M⋆(H, k,T) for the optimal mistake bound in the k-realizable setting
when the number of rounds is bounded by T, and the notation M⋆Agn(H,T) for the optimal
mistake bound when the number of rounds is bounded by T, but there is no limitation on the
number of mistakes made by the best hypothesis in H.

We first prove the upper bound. [ABED+21] have shown that, for any time horizon T, we

always have M⋆(H, k,T) ≤ k+O
(√

T · L(H)
)
. By Proposition 7.2, time horizon T = O(M⋆(H, k))

suffices to guarantee M⋆(H, k) ≤ M⋆(H, k,T) + 1. Plugging this time horizon into the result of
[ABED+21] reveals that

M⋆(H, k) ≤ k +O
(√

M⋆(H, k) · L(H)
)
.

Solving this quadratic inequality in
√
M⋆(H, k) yields the upper bound claimed in the theorem.

We now turn to prove the lower bound. We consider two cases. If k ≤ L(H), it suffices
to prove a lower bound of k + Ω(L(H)). The lower bound k + L(H)/2 of [LW94] establishes

40

that. In the complementary case, suppose that k > L(H). Therefore, we only need to prove a

lower bound of k + Ω
(√

k · L(H)
)
. This follows from the following adaptation of the classic

regret bound of [BDPSS09]. They showed that M⋆Agn(H,T) ≥ b+Ω
(√

L(H) ·T
)
, where b is the

minimal number of mistakes made by a best hypothesis h⋆ ∈ H. To adapt this bound to our

setting, first play the game for T = k rounds, forcing a loss of at least b+Ω
(√

k · L(H)
)
on the

learner. Now, as we prove in Theorem 9.4,12 the adversary can further force the learner a loss
arbitrarily close to k − b, using an input sequence which is (k − b)-realizable by h⋆. Overall, the

input sequence is k-realizable by h⋆, and we get the desired lower bound k +Ω
(√

k · L(H)
)
.

8.5 Adapting to k

This section presents our proof of Theorem 8.7, showing that it is possible to adapt to the value
of k without sacrificing too significantly in the expected mistake bound.

The adaptive technique we propose uses an experts algorithm of [KvE15] named Squint, with
experts defined by the optimal randomized algorithm for the k-realizable setting, for all values
of k ∈ N (including k = 0).

The experts algorithm Squint accepts an input sequence S = (x1, y1), . . . , (xn, yn) and
a list of learners Lrnk, each with an associated weight πk. The weights πk should form a
probability distribution. With an appropriate choice of parameters, Squint has the following
guarantee [KvE15, Theorem 3]:

M(Squint;S) ≤ min
k

{
M(Lrnk;S) +O

(√
Vk log

log Vk

πk
+ log

1

πk

)}
, (11)

where Vk is an uncentered variance term given by

Vk =

n∑
i=1

(|Squint(x1, y1, . . . , xi−1, yi−1, xi)− yi| − |Lrnk(x1, y1, . . . , xi−1, yi−1, xi)− yi|)2.

Since both absolute values are in the range [0, 1], we have

Vk ≤
n∑

i=1

|Squint(x1, y1, . . . , xi−1, yi−1, xi)− yi|+
n∑

i=1

|Lrnk(x1, y1, . . . , xi−1, yi−1, xi)− yi|

= M(Squint;S) + M(Lrnk;S).

For any given k, if M(Squint;S) > M(Lrnk;S), then we have Vk ≤ 2M(Squint;S), so that (11)
implies

M(Squint;S) ≤ M(Lrnk;S) +O

√M(Squint;S) log
log M(Squint;S)

πk
+ log

1

πk

 .

This inequality trivially holds as well in the case M(Squint;S) ≤ M(Lrnk;S) due to the first term
on the right hand side. Moreover, this inequality further implies

M(Squint;S) = O

(
M(Lrnk;S) + log

1

πk
+ 1

)
.

12We prove this result in the setting of prediction with expert advice, but it holds for general hypothesis classes
(as long as the domain is non-empty).

41

To see this, note that were it not the case, we could upper bound each M(Lrnk;S) and log 1
πk

on the right hand side by M(Squint;S)/c for some large constant c, making the right hand side
strictly less than M(Squint;S): a contradiction. Plugging in this upper bound on M(Squint;S)
into the log log M(Squint;S) term and simplifying with elementary inequalities reveals

M(Squint;S) ≤ M(Lrnk;S) +O

√M(Squint;S) log
log M(Lrnk;S)

πk
+ log

1

πk

 .

This is a quadratic inequality in
√
M(Squint;S). Solving the quadratic for the range of M(Squint;S)

where the inequality holds, we have

M(Squint;S) ≤ M(Lrnk;S) +O

√M(Lrnk;S) log
log M(Lrnk;S)

πk
+ log

log M(Lrnk;S)

πk

 .

Since this holds for any k, we conclude that

M(Squint;S) ≤ min
k

M(Lrnk;S) +O

√M(Lrnk;S) log
log M(Lrnk;S)

πk
+ log

log M(Lrnk;S)

πk

 .

(12)
We instantiate Squint with algorithm WeightedRandSOA of Figure 10. Namely, for every k, we

let Lrnk be the instantiation ofWeightedRandSOA withWH,k. We use the weights πk = 1
(k+1)(k+2) .

Since πk = 1
k+1 −

1
k+2 , they indeed constitute a probability distribution. Since WeightedRandSOA

achieves the optimal mistake bound (see Section 8.3), Eq. (12) shows that if S is k⋆-realizable
by H then

M(Squint;S) ≤ M⋆(H, k⋆)+O

(√
M⋆(H, k⋆) log

(
(k⋆ + 1) log M⋆(H, k⋆)

)
+ log

(
(k⋆ + 1)M⋆(H, k⋆)

))
.

Since M⋆(H, k⋆) ≥ k⋆/2, the term log
(
(k⋆+1)M⋆(H, k⋆)

)
can be swallowed by the preceding term.

8.6 Finite Classes

The randomized Littlestone dimension is defined as a supremum. The supremum is not always
achieved even in the realizable case, as Example 5.10 shows. However, if the hypothesis class is
finite, then Proposition 5.9 shows that the randomized Littlestone dimension is achieved by a
finite tree.

In this section, we extend the latter result to the setting of weighted hypothesis classes, using
infinite trees. The trees that we construct will furthermore be “nonredundant”, in the following
sense.

Definition 8.11 (Nonredundant trees). Let W be a non-empty weighted hypothesis class, and
let T be a non-empty tree shattered by it. The tree T is weakly nonredundant for W if one of
the following holds:

1. T is a leaf.

2. The root of T is labeled by an instance x such that either Wx→0 ̸= W or Wx→1 ̸= W.

3. W is a singleton (that is, |W| = 1).

42

A non-empty tree T is nonredundant for W if this holds recursively. In detail, if T is a leaf,
then it is always nonredundant. Otherwise, let x be the label of the root, leading to the two
subtrees T0, T1. The tree T is nonredundant for W if it is weakly nonredundant for W , the tree
T0 is nonredundant for Wx→0, and tree T1 is nonredundant for Wx→1.

If the root of T is labeled by an instance x such that Wx→0 = W, then this corresponds
to an adversarial strategy in which by predicting 0, the learner can guarantee that either her
prediction is correct, or all experts are wrong. Intuitively, there is no reason for the adversary to
ask such a question. We prove this formally below.

Proposition 8.12. Let W be a finite weighted hypothesis class. There exists a (possibly infinite)
tree T∞ shattered by W such that

RL(W) =
1

2
ET∞ .

Moreover, T∞ is monotone and nonredundant for W.

Proof. We start by showing that if we are able to construct a (possibly infinite) tree T∞ shattered
by W such that RL(W) = ET∞/2, then it is automatically monotone.

If T∞ is a leaf then it is monotone. Otherwise, suppose that the root is labeled by x ∈ X ,
and let the two subtrees of the root be T∞,0, T∞,1. The subtree T∞,b must be shattered by
Wx→b and satisfy RL(Wx→b) = ET∞,b

/2. Clearly RL(Wx→b) ≤ RL(W), since any tree shattered
by Wx→b is also shattered by W. Therefore ET∞,b

≤ ET∞ .

The proof of the rest of the proposition is by induction on the total weight of hypotheses in
W. If RL(W) = 0 then there is nothing to prove. Otherwise, considering all possible roots and
using the formula RL(W) = supT ET /2, where the supremum is over all trees shattered by W,
we see that

RL(W) =
1

2
+ sup

x∈X

RL(Wx→0) + RL(Wx→1)

2
.

Since W is finite, there are only finitely many possible pairs (Wx→0,Wx→1). This shows that
the supremum is achieved by some instance x, which satisfies

RL(W) =
1

2
+

RL(Wx→0) + RL(Wx→1)

2
.

If Wx→0,Wx→1 ̸= W then we can apply the induction hypothesis to construct (possibly
infinite) nonredundant trees T∞,0, T∞,1 shattered by Wx→0,Wx→1 (respectively) such that
RL(Wx→0) = ET∞,0/2 and RL(Wx→1) = ET∞,1/2. The tree T∞ comprising a root labeled x
leading to the subtrees T∞,0, T∞,1 then satisfies all the requirements of the proposition.

Suppose next that Wx→0 = Wx. Calculation shows that

RL(W) = 1 + RL(Wx→1).

We can apply the induction hypothesis to construct a (possibly infinite) nonredundant tree S∞
shattered by Wx→1) such that ES∞/2 = RL(Wx→1). We will show that we can attach to each
leaf v of S∞ a tree Tv satisfying ETv = 2 such that the resulting tree T∞ is nonredundant and
shattered by W. Since ET∞/2 = 1 + ES∞/2 = 1 + RL(Wx→1) = RL(W), this will complete the
proof.

Let v be a leaf of S∞, let (x1, y1), . . . , (xℓ, yℓ) be the path leading to it, and let Wv =
Wx1→y1,...,xℓ→yℓ . Since Wv = {(h,w + 1) : (h,w) ∈ Wx→1} and Wx→1 is non-empty by construc-
tion, we see that Wv is also non-empty.

Therefore, there exists (h,w) ∈ Wv so that w ≥ 1. Let x be an arbitrary instance, and
suppose for concreteness that h(x) = 0. We construct a tree Tv which is an infinite left-leaning

43

path (as in Figure 3) in which all vertices are labeled x. The length of a random branch has
distribution Geom(1/2), and so ETv = 2.

Proposition 8.12 doesn’t necessarily hold if we restrict ourselves to finite trees. To see this,
consider the weighted hypothesis class W = {(h0, 1)} over the domain N, in which h0(n) = 0
for all n ∈ N. All canonical trees shattered by W are truncations of the infinite path depicted
in Figure 3. The infinite path has expected branch length 2, yet its truncation to depth k has
expected branch length 2− 21−k.

8.7 The Perceptron

We close this section by considering the classical Perceptron algorithm [Ros58] in the k-realizable
setting, showing that its finite mistake-bound guarantee is retained in the k-realizable setting,
namely when there exists a linear separator which correctly classifies (with margin) all but k of
the examples in the input sequence.

Let us first quickly recall the Perceptron algorithm: its input is a sequence

S = (x1, y1), . . . , (xt, yt),

where xi ∈ Rn is the instance and yi ∈ {±1} is the label. The Perceptron maintains a linear
predictor wi ∈ Rn, initialized to w1 = 0. Then, at each step i, the Perceptron predicts
ŷi = sign(⟨wi, xi⟩). In case of a mistake, i.e. ŷi ̸= yi, the Perceptron updates its linear predictor
by setting wi+1 = wi + yi · xi. Notice that the Perceptron is mistake-driven, that is, it changes
its predictor only when it makes a mistake.

Proposition 8.13 (Perceptron: k-Realizable Mistake Bound). Assume an input sequence
S = (x1, y1), . . . , (xt, yt) which is k-realizable in the sense that there exists w ∈ Rn such that
yi⟨w, xi⟩ ≥ 1 for at least t− k indices i. Let

B := min{∥w∥ : yi⟨w, xi⟩ ≥ 1 for at least t− k indices i} and R := max
i

∥xi∥.

Then, the number of mistakes the Perceptron makes on S is at most B2R2 + 2k(BR+ 1).

Proof. The proof is a simple adaptation of the standard analysis. Let M denote the number
of mistakes, and let w⋆ = argmin{∥w∥ : yi⟨w, xi⟩ ≥ 1 for at least t− k indices i}, so that
∥w⋆∥ = B. Notice that whenever the Perceptron makes a mistake, it sets wi+1 by adding yixi to
wi, where ⟨yixi, wi⟩ = yi⟨xi, wi⟩ ≤ 0. Thus, the added vector yixi is negatively correlated with
wi, and hence

∥wi+1∥2 ≤ ∥wi∥2 + ∥yixi∥2 ≤ ∥wi∥2 +R2.

Consequently, the final predictor wt satisfies

∥wt∥ ≤
√
MR. (13)

We proceed by lower-bounding ⟨wt, w
⋆⟩: consider a step u at which the predictor wi is being

updated (i.e. ŷi ̸= yi). If yi⟨w⋆, xi⟩ ≥ 1 then the standard argument holds:

⟨wi+1, w
⋆⟩ − ⟨wi, w

⋆⟩ = ⟨yixi, w⋆⟩ = yi⟨xi, w⋆⟩ ≥ 1.

Otherwise, we use the trivial bound

⟨wi+1, w
⋆⟩ − ⟨wi, w

⋆⟩ = yi⟨xi, w⋆⟩ ≥ −∥xi∥∥w⋆∥ ≥ −BR.

44

Crucially, notice that by k-realizability, the second case (in which yi⟨w⋆, xi⟩ < 1) happens for at
most k steps. Summing up over all the M steps at which there was an update, we get:

⟨wt, w
⋆⟩ ≥ (M − k) · 1− k ·BR. (14)

Combining Equations (13) and (14), we get

√
MR ≥ ∥wt∥ ≥ 1

∥w⋆∥
⟨wt, w

⋆⟩ ≥ M − k − kBR

B
.

The latter inequality implies that M satisfies
√
MBR ≥ M − k(BR + 1). Squaring, we see that

MB2R2 ≥ M2 − 2k(BR+ 1)M , and so M ≤ B2R2 + 2k(BR+ 1), as required.

9 Prediction using Expert Advice

In this section, we consider the problem of prediction using expert advice, which was raised
in [Vov90, LW94]. Specifically, we consider the k-realizable setting, which was suggested
in [CBFHW96,CBFH+97] and further studied in [ALW06,MS10,BP19].

The problem concerns a repeated game which has the same flavor as the online learning
game of Section 4. The game is between a learner and an adversary. Additionally, there are n
experts. Each round i in the game proceeds as follows:

(i) The experts present predictions ŷ
(1)
i , . . . , ŷ

(n)
i ∈ {0, 1}.

(ii) The learner predicts a value pi ∈ [0, 1].

(iii) The adversary reveals the true answer yi ∈ {0, 1}, and the learner suffers the loss |yi − pi|.

The adversary must choose the answers so that at least one of the experts makes at most k

mistakes. That is, there must exist an expert j such that yi ̸= ŷ
(j)
i for at most k many indices i.

We call such an adversary k-consistent.
The goal is to determine the optimal loss of the learner as a function of n and k. We denote

the optimal loss of the learner by M⋆(n, k), and the optimal loss when the learner is constrained
to output predictions in {0, 1} by M⋆D(n, k).

The game underlying prediction using expert advice is quite similar to the online learning
game. In fact, we can relate the two.

Let Xn = {0, 1}n, and consider the hypothesis class Un on the domain Xn consisting of the
projection functions hi(x1, . . . , xn) = xi. We can simulate the game of prediction using expert
advice by the online learning game as follows: whenever the experts predict x1, . . . , xn, the
adversary sends the instance (x1, . . . , xn). The adversary in the original game is k-consistent if
and only if the sequence (xi, yi) is k-realizable by Un.

This simulation goes both ways, and so the two games are actually equivalent. The upshot
is that we can express M⋆(n, k) and M⋆D(n, k) in terms of quantities we have already considered:

M⋆(n, k) = M⋆(Un, k) = RLk(Un) and M⋆D(n, k) = M⋆(Un, k) = Lk(Un).

The equivalence above shows that Un is the “hardest” hypothesis class of size n, in the sense
that it maximizes both M⋆(H, k) and M⋆D(H, k) over all hypothesis classes H of size n. Indeed,
M⋆(H, k) and M⋆D(H, k) are equal to the optimal loss in the game of prediction using expert
advice when the answers of the experts must belong to {(h1(x), . . . , hn(x)) : x ∈ X}, where
H = {h1, . . . , hn} has domain X .

45

Bounded horizon. Prediction using expert advice is often considered when the number of
rounds is bounded. Let M⋆(n, k,T) be the optimal loss of the learner when the number of rounds
is T.

Clearly M⋆(n, k,T) ≤ M⋆(n, k). In view of Theorem 7.1, Proposition 7.2 shows that M⋆(n, k,T) ≥
M⋆(n, k)− ϵ already for T = 2M⋆(n, k)+O(

√
M⋆(n, k) log(M⋆(n, k)/ϵ)). In contrast, since a learner

can always guarantee a loss of at most 1/2 per round by predicting 1/2, we have M⋆(n, k,T) ≤ T/2,
and so M⋆(n, k,T) ≥ M⋆(n, k)− ϵ requires T ≥ 2M⋆(n, k)− 2ϵ.

(The deterministic case is not interesting, since trivially M⋆D(n, k,T) = min{T, M⋆D(n, k)}.)

9.1 Optimal Mistake Bounds

For every n ≥ 1 and k ≥ 0, let

D(n, k) = max

{
d : d ≤ log n+ log

(
d

≤ k

)}
.

The value of D(n, k) plays a central role in the problem of prediction using expert advice:
[CBFHW96] showed that M⋆D(n, k) ≤ D(n, k) using the Binomial Weights learning rule, and
complemented this with an asymptotically matching lower bound M⋆D(n, k) ≥ D(n, k)−o(D(n, k)).
(More details in Appendix A.1.) The lower bound is proved by constructing a k-covering code
of size n that simulates the experts. When k is fixed and n is large enough, it can be further
improved to M⋆D(n, k) ≥ D(n, k)− 1, as shown in [CBFHW96]. (More details in Appendix A.3.)
We describe asymptotic approximations to D(n, k) in Section 9.5.

The paper [CBFHW96] leaves open the problem of determining whether M⋆(n, k) ≤ D(n,k)
2 + c

for some universal constant c. [CBFH+97] showed that M⋆(n, k) ≤ M⋆D(n, k)/2 + o(M⋆D(n, k))
whenever k = o(log n) or k = ω(log n).13 [ALW06] showed that for large enough n (as a
function of k), M⋆(n, k) ≤ M⋆D(n, k)/2 + O(1). [BP19] showed that for k = o(log n), M⋆(n, k) ≤
(1 + o(1))M⋆D(n, k)/2 even in the multiclass setting where the experts’ predictions are chosen
from some finite set {1, . . . , d}. In this section, we remove any assumptions on n, k, proving the
following theorem:

Theorem 9.1. Let n ≥ 2 and k ≥ 0. Then

M⋆(n, k) ≤ D(n, k)/2 +O
(√

D(n, k)
)
.

The error term is tight for n = 2:

Theorem 9.2. Let k ≥ 0. Then

M⋆(2, k) = D(2, k)/2 + Ω
(√

D(2, k)
)
.

We are able to improve the upper bound for small k values:

Theorem 9.3. Let n ≥ 2, and suppose that k ≤ c log n for some c < 1/2. Then there exists a
constant C, depending only on c, such that

M⋆(n, k) ≤ D(n, k)/2 + C logD(n, k).

13More precisely, they showed that M⋆(n, k) ≤ k+ logn
2

+
√
k lnn. Together with the bound M⋆D(n, k) ≥ 2k+⌊logn⌋

of [LW94], this implies that M⋆(n, k) ≤ M⋆D(n, k)/2 + o(M⋆D(n, k)) whenever k = o(logn) or k = ω(logn).

46

All of our bounds are attained using the randomized k-Littlestone dimension of Un. Note that
as a special case of Theorem 8.6, one can also derive the bounds M⋆(n, k) = k+Θ

(√
k log n+ log n

)
,

using L(Un) = ⌊log n⌋. The upper bound was proved by [CBFH+97]. We prove the upper bounds
in Section 9.2, and the lower bound in Section 9.3. We determine M⋆(2, k) exactly in Section 9.4.
We close the section by proving that even in the case k = 0 the optimal learning rule is necessarily
improper in Section 9.6.

All results we stated so far concern n ≥ 2. The case n = 1 is different, and much simpler:

Theorem 9.4. Let k ≥ 0. Then

M⋆(1, k) = M⋆D(1, k) = D(1, k) = k.

Proof. According to the definition, D(1, k) is the maximum d such that 2d ≤
(

d
≤k

)
. Since(

d
≤d

)
= 2d whereas

(
d+1
≤d

)
< 2d+1, we see that D(1, k) = k.

The complete tree of depth k, labeled arbitrarily, is k-shattered by U1. In contrast, a tree
of depth k + 1 cannot be k-shattered by U1, since there exists a branch on which the unique
hypothesis makes k + 1 mistakes. Therefore M⋆D(1, k) = k.

For the randomized case, according to Proposition 8.12 there is an infinite tree Tk such that
M⋆(1, k) = RLk(U1) = ETk

/2. Denote the unique hypothesis in U1 by h. By possibly switching
the order of children, we can assume that all vertices in Tk are labeled by an instance x such
that h(x) = 0. We can then identify vertices of Tk with binary strings.

Since Tk is optimal, it contains all strings which contain at most k many 1s. A string is a
leaf it it contains exactly k many 1s and it ends with 1. The length of a random branch has the
distribution of a sum of k many Geom(1/2) random variables, and so M⋆(1, k) = ETk

/2 = k.

In contrast, [LW94] shows that M⋆D(n, k) ≥ 2k + ⌊log n⌋ for n ≥ 2, highlighting the difference
between n = 1 and n > 1. This immediately implies the following corollary, which will be useful
in the sequel:

Corollary 9.5. Let n ≥ 2 and k ≥ 0. Then D(n, k) ≥ 2k + 1.

Proof. Clearly D(n, k) ≥ D(2, k). Theorem 9.7 shows that D(2, k) ≥ M⋆
D(2, k), which is at least

2k + 1 by the result of [LW94].

9.2 Proofs of the Upper Bounds on M⋆(n, k)

We start by proving a probabilistic version of the sphere packing bound for covering codes [CHLL97].

Lemma 9.6. Let H be a finite hypothesis class of size n ≥ 1. Let t ≥ k ≥ 0, and let T be a tree
whose minimum depth is at least t.

Let S = (x1, y1), . . . , (xt, yt) be the random prefix of length t, consisting of the first t steps
in a random branch of T . The probability that S is k-realizable by H is at most

n

(
t

≤ k

)
/2t.

Proof. For each hypothesis h ∈ H and set of indices I ⊆ [t], the probability that yi ̸= h(xi) for
all indices in I and yi = h(xi) for all indices outside of I is 2−t.

The sequence S is k-realizable by H if the event above happens for some h ∈ H and some I of
size at most k. Applying the union bound, we get that the probability is at most n

(
t

≤k

)
/2t.

As a warm-up, we use this lemma together with the k-Littlestone dimension to reprove the
upper bound M⋆D(n, k) ≤ D(n, k), first proved in [CBFHW96].

47

Theorem 9.7. Let n ≥ 1 and k ≥ 0. Then M⋆D(n, k) ≤ D(n, k).

Proof. Since M⋆D(n, k) = Lk(Un), it suffices to bound Lk(Un).
Let T be a tree satisfying mT = Lk(Un) which is k-shattered by Un. A random prefix of length

Lk(Un) is k-realizable by Un, and so 2Lk(Un) ≤ n
(
Lk(Un)
≤k

)
by Lemma 9.6. Taking the logarithm,

we deduce that Lk(Un) ≤ D(n, k) by the definition of D(n, k).

We now prove Theorem 9.1 and Theorem 9.3. The main tools are concentration of the
random branch length in quasi-balanced trees (Lemma 6.9), and the following lemma.

Lemma 9.8. Let H be a finite hypothesis class of size n ≥ 1. Let D = D(n, k), and let T be
a tree of minimum depth at least (1 + ϵ)D, where 0 < ϵ < 1/3. The probability that a random
prefix of length (1 + ϵ)D is k-realizable by H is at most

21−ϵ2D/9.

Furthermore, if k ≤ cD for some constant c < 1/2 then the probability is at most

21−c′ϵD,

where c′ > 0 is a constant depending only on c.

The proof of this lemma will require some elementary estimates on binomial coefficients,
summarized in the following technical lemma.

Lemma 9.9. Let D ≥ k ≥ 1 and ϵ > 0. Then(
(1 + ϵ)D

≤ k

)
≤ 2ϵD·log(D/(D−k)) ·

(
D

≤ k

)
.

If furthermore k ≤ D/2 and ϵ ≤ 1/3 then(
(1 + ϵ)D

≤ k

)
≤ 2ϵD−ϵ2k/3 ·

(
D

≤ k

)
.

We prove this lemma in Subsection 9.2.1.

Proof of Lemma 9.8. We start by observing that

n

(
D

≤ k

)
/2D ≤ 2, (15)

Indeed, the maximality of D shows that

1 > n

(
D + 1

≤ k

)
/2D+1 ≥ 1

2
n

(
D

≤ k

)
/2D,

from which Eq. (15) immediately follows.
Denote by p the probability we wish to bound. Lemma 9.6 shows that

p ≤ n

(
(1 + ϵ)D

≤ k

)
/2(1+ϵ)D =

((1+ϵ)D
≤k

)(
D
≤k

) · 2−ϵD · n
(

D

≤ k

)
/2D ≤ 21−ϵD ·

((1+ϵ)D
≤k

)(
D
≤k

) ,

using Eq. (15). It remains to estimate the ratio using Lemma 9.9.

48

We start by proving the “furthermore” part. By assumption, we have k ≤ cD. Applying
Lemma 9.9, we deduce that

p ≤ 21−(1−log(D/(D−k)))ϵD.

Since

c′ = 1− log
D

D − k
= 1− log

1

1− k/D
≥ 1− log

1

1− c
> 0,

this completes the proof of the “furthermore” part.
In order to prove the main part of the lemma, we distinguish between two cases. If k ≤ D/3

then the “furthermore” bound shows that

p ≤ 21−c′ϵD,

where c′ = log(4/3). Since ϵ ≤ 1/3, we have c′ϵ ≥ ϵ2/9, completing the proof in this case.
Otherwise, k ≥ D/3. In this case, noting that k ≤ D/2 by Corollary 9.5, we apply the

“furthermore” part of Lemma 9.9 to obtain

p ≤ 21−ϵ2k/3 ≤ 21−ϵ2D/9.

We can now prove the upper bounds on M⋆(n, k). The idea is simple. Let T be a tree which
is k-shattered by Un. Using Proposition 8.12 , we can assume that T is quasi-balanced, and so
the length of a random branch is concentrated around ET .

This implies that T realizes almost all sequences of size (1 − ϵ)ET . These sequences are
k-realized by Un, and we obtain an upper bound on ET via Lemma 9.8.

Proof of Theorem 9.1. Since M(n, k) = RLk(Un), we bound the latter. Proposition 8.12 shows that
there is an infinite tree T which is k-shattered by Un and satisfies ET /2 = RLk(Un). Furthermore,
T is monotone, and so Proposition 6.9 applies to it (while the proposition is formulated for finite
quasi-balanced trees, the proof actually directly uses monotonicity, and is valid for infinite trees).

In order to bound ET , we will show that for small enough ϵ > 0, the assumption (1 + ϵ)D ≤
(1− ϵ)ET leads to a contradiction.

Extend T arbitrarily to a tree T ′ of minimum depth (1 + ϵ)D, and let S be a random prefix
of T ′ of length (1 + ϵ)D. If S lies completely within T then it is k-realizable by Un, and so

Pr[S lies within T] ≤ Pr[S is k-realizable by Un].

The probability that S lies within T is precisely the probability that a random branch of T
has length at least (1 + ϵ)D. Since we assume that (1 + ϵ)D ≤ (1− ϵ)ET , this probability is at
least 1− e−ϵ2ET /4 by Proposition 6.9, and so at least 1− e−ϵ2D/4.

In contrast, the probability that S is k-realizable by Un is at most 21−ϵ2D/9 by Lemma 9.8.
Therefore

1 ≤ e−ϵ2D/4 + 21−ϵ2D/9.

Let ϵ = C/
√
D. As C → ∞, the right-hand side tends to 0, and in particular, we obtain a

contradiction for some constant C > 0.
It follows that (1 + ϵ)D > (1− ϵ)ET for ϵ = C/

√
D, and so

ET <
1 + ϵ

1− ϵ
D = (1 +O(1/

√
D))D = D +O(

√
D).

The proof of Theorem 9.3 is similar, and uses the “furthermore” clause of Lemma 9.8.

49

Proof of Theorem 9.3. We closely follow the proof of Theorem 9.1, and we only indicate the
part which is different.

We start by assuming that (1 + ϵ)D ≤ (1− ϵ)ET for some ϵ > 0. The assumption k ≤ c log n
implies k ≤ cD since D ≥ log n by definition of D. Therefore we can use the “furthermore”
clause of Lemma 9.8, and so for some constant c′ > 0 depending on c,

1 ≤ e−ϵ2D/4 + 2e−c′ϵD.

Let ϵ = C lnD/D, where C = 2/c′. Since ϵ2D/4 = Θ(ln2D/D), we can find C ′ such that if
D ≥ C ′ then ϵ2D/4 ≤ 1. Since e−x ≤ 1− x+ x2/2 ≤ 1− x/2 for 0 ≤ x ≤ 1, this shows that

1 ≤ 1− ϵ2D

8
+

2

D2
= 1− C2 ln2D

8D
+

2

D2
,

which fails for D ≥ C ′′, where C ′′ ≥ C ′ depends only on c.
We conclude that if D ≥ C ′′ then

ET <
1 + ϵ

1− ϵ
D = (1 +O(logD/D))D = D +O(logD).

If D < C ′′, then this follows from the bound ET ≤ 2M⋆(n, k) ≤ 2M⋆D(n, k) ≤ 2D, where we used
an appropriate extension of Proposition 6.11 together with Theorem 9.7.

9.2.1 Proof of Technical Estimate

In this section we complete the proofs of Theorem 9.1 and Theorem 9.3 by proving Lemma 9.9.
We start with estimates on the ratio of individual binomial coefficients.

Lemma 9.10. Let D ≥ ℓ ≥ 1 and ϵ > 0. Then(
(1 + ϵ)D

ℓ

)
≤ 2ϵD·log(D/(D−ℓ)) ·

(
D

ℓ

)
.

If furthermore ℓ ≤ D/2 and ϵ ≤ 1/3 then(
(1 + ϵ)D

ℓ

)
≤ 2ϵD·log(D/(D−ℓ))−ϵ2ℓ/3 ·

(
D

ℓ

)
.

Proof. We can calculate the ratio between the binomials explicitly:

Rℓ :=

(
(1 + ϵ)D

ℓ

)/(
D

ℓ

)
=

ℓ−1∏
r=0

(1 + ϵ)D − r

D − r
=

ℓ−1∏
r=0

(
1 +

ϵD

D − r

)
.

Applying the well-known estimate ln(1 + x) ≤ x, we obtain

lnRℓ ≤
ℓ−1∑
r=0

ϵD

D − r
≤ ϵD ·

∫ D

D−ℓ

dx

x
= ϵD · ln D

D − ℓ
,

and so
Rℓ ≤ 2ϵD·log(D/(D−ℓ)).

Now suppose that ℓ ≤ D/2 and ϵ ≤ 1/3. For r ∈ {0, . . . , ℓ− 1} we have

ϵD

D − r
≤ ϵD

D − ℓ
=

ϵ

1− ℓ/D
≤ 2ϵ ≤ 2/3.

Since 1 + x ≤ ex−x2/3 for x ≤ 0.787, we can improve the estimate on Rℓ:

lnRℓ ≤ ϵD · ln D

D − ℓ
− 1

3

ℓ−1∑
r=0

ϵ2D2

(D − r)2
≤ ϵD · ln D

D − ℓ
− 1

3
ϵ2ℓ.

50

We can now prove Lemma 9.9.

Proof of Lemma 9.9. The ratio between
((1+ϵ)D

≤k

)
and

(
D
≤k

)
is clearly at most max(R0, . . . , Rk),

where Rℓ is the ratio between the binomials in Lemma 9.10.
If we only assume that D ≥ ℓ ≥ 1 and ϵ > 0, then Lemma 9.10 states that

logRℓ ≤ ϵD · log D

D − ℓ
,

which is clearly monotone increasing in ℓ. Therefore

logmax(R0, . . . , Rk) ≤ ϵD · log D

D − k
.

If we furthermore assume that k ≤ D/2 and ϵ ≤ 1/3, then Lemma 9.10 states that

logRℓ ≤ ϵD · log D

D − ℓ
− 1

3
ϵ2ℓ.

The derivative of the upper bound with respect to ℓ is

ϵD

D − ℓ
− 1

3
ϵ2 ≥ ϵ− 1

3
ϵ2 > 0,

since ϵ ≤ 1/3. Therefore the upper bound is maximized at ℓ = k, and we conclude that

logmax(R0, . . . , Rk) ≤ ϵD · log D

D − k
− 1

3
ϵ2k.

Since k ≤ D/2, we can further estimate

log
D

D − k
= log

1

1− k/D
≤ log 2 = 1.

9.3 Lower bounding M⋆(2, k)

We prove Theorem 9.2 by applying the lower bound of Theorem 8.6. In Section 9.4, we show
how our techniques can be used to determine the exact value of M⋆(2, k).

Proof of Theorem 9.2. Since L(U2) = 1, Theorem 8.6 implies that

M⋆(2, k) = RLk(U2) = k +Ω(k).

On the other hand, it is easy to see that D(2, k) = 2k + 1. Indeed, if d ≥ 2k + 1 then

log 2 + log

(
d

≤ k

)
≤ log 2 + log 2d−1 = d,

with equality if and only if d = 2k + 1. Therefore D(2, k) = 2k + 1.

51

9.4 Determining M⋆(2, k)

We are able to determine M⋆(2, k) and M⋆D(2, k) exactly.

Theorem 9.11. For all k ≥ 0,

M⋆(2, k) = k +
(k + 1/2)

(
2k
k

)
4k

and M⋆D(2, k) = D(2, k) = 2k + 1.

Results in the same spirit were previously proved. Interestingly, by using a random walk
analysis, [AWY08] showed that the optimal loss of a proper algorithm in the case of two experts
is M⋆(2, k)+1. In the bounded horizon setting, [Cov65] showed that the optimal regret in the case

of two experts is
√

T
2π where T is the horizon. Later, [GPS16] identified a connection between

this result and one-dimensional random walks.14

Proof of Theorem 9.11. According to Proposition 8.12, there is a nonredundant infinite tree T
which is k-shattered by U2 and satisfies M⋆(2, k) = RLk(U2) = ET /2. We will show that without
loss of generality, all vertices in T are labeled (0, 1). This will allow us to determine T exactly,
and so to compute M⋆(2, k).

If there is a vertex labeled (1, 0), we can switch its label to (0, 1) and switch its two children.
The resulting tree is also k-shattered by U2 and has the same expected branch length.

If a vertex is labeled (0, 0), then by nonredundancy, only one hypothesis is “still in play”
(that is, all branches passing through the vertex are realized by the same hypothesis), say the
first one. Therefore if we change its label to (0, 1) then the resulting tree is also k-shattered by
U2.

Concluding, we can assume without loss of generality that all vertices in T are labeled (0, 1).
Such a tree is k-shattered by U2 if every prefix (path starting at the root) contains at most k
many 0-edges or at most k many 1-edges. Identifying vertices in the tree by the strings formed
from the labels of the edges leading to them from the root, the labels of all vertices must contain
at most k many 0s or at most k many 1s. We call such strings legal.

Since the tree T is optimal, its leaves correspond to legal strings s such that either s0 or s1
is illegal. If s terminates with 0 then it is a leaf if it either contains at least k + 1 many 1s and
exactly k many 0s (in which case s0 is illegal), or if it contains exactly k many 1s and exactly
k + 1 many 0s (in which case s1 is illegal). This defines T completely, and we can calculate

ET = 2
∞∑

t=k+1

(t+ k)

(
t+k−1
k−1

)
2t+k

+ 2 · (2k + 1)

(
2k
k

)
22k+1

= 2k
∞∑

t=k+1

(
t+k
k

)
2t+k

+
(2k + 1)

(
2k
k

)
4k

.

The infinite series is the probability that if we toss an unbiased coin, then eventually both sides
show up at least k + 1 many times (if the last toss was heads then t is the number of tails, and
vice versa). Therefore

ET = 2k +
(2k + 1)

(
2k
k

)
4k

.

The formula for M⋆(2, k) immediately follows.

All leaves in T have depth at least 2k + 1, and so

M⋆D(2, k) = Lk(U2) ≥ mT = 2k + 1.

We showed that D(2, k) = 2k + 1 in the course of the proof of Theorem 9.2. Recall that

[CBFHW96] showed that M⋆D(2, k) ≤ D(2, k), which finishes the proof.
14In a one-dimensional random walk, a particle chooses whether to go left or right in each step.

52

Regime Approximation

k = o(log n) D(n, k) ≈ log n

k = logn
c for constant c D(n, k) ≈ k/f−1(c)

k = ω(log n) D(n, k) ≈ 2k

Table 1: Approximations of D(n, k) in various regimes

9.5 Approximations of D(n, k)

The quantity D(n, k) appears in the bounds on both M⋆(n, k) and M⋆D(n, k). In the literature on
prediction using expert advice, some papers obtain bounds in terms of D(n, k) or variations of
it [CBFHW96,MS10], while others give explicit bounds [CBFH+97,BP19]. In this brief section,
we describe simple asymptotic approximations of D(n, k). The notation a(n, k) ≈ b(n, k) means

that lim(n+k)→∞
a(n,k)
b(n,k) = 1 where a, b are functions of n, k. Using this notation, [CBFHW96]

showed that M⋆D(n, k) ≈ D(n, k), and so the asymptotic expansions below apply to M⋆D(n, k) as
well.

For n = 1, we know that D(1, k) = k (Theorem 9.4). For n ≥ 2, we have the following known
bounds:

2k + ⌊log n⌋ ≤ D(n, k) ≤ 2k + log n+ 2
√
k lnn.

The lower bound is since M⋆D(n, k) ≥ 2k + ⌊log n⌋ due to [LW94] and D(n, k) ≥ M⋆D(n, k) due to
[CBFHW96] (and this work). The upper bound follows from [CBFHW96,CBFH+97]. Using
those bounds, it is straightforward that D(n, k) ≈ log n when k = o(log n), and that D(n, k) ≈ 2k
when k = ω(log n).

The intermediate case is a bit more involved. Suppose that k = logn
c for some constant c.

Let d⋆(n, k) be the solution of the equation

d = log n+ dh(k/d),

where h(p) = −p log p− (1− p) log(1− p) is the binary entropy function. After rearranging, we
get

1− h(k/d)

k/d
= c.

Therefore, if we define

f(p) =
1− h(p)

p

then

d⋆(n, k) =
k

f−1 (c)
,

where we take the branch of the inverse which lies in (0, 1/2]. The results of [CBFHW96] imply
that d⋆(n, k) ≈ D(n, k) (more details can be found in Appendix A.2). Therefore we deduce

D(n, k) ≈ k

f−1 (c)
.

The approximations are summarized in Table 1. The function f−1(c) is plotted in Figure 11.

53

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

c

f
−
1
(c
)

Figure 11: Plot of f−1(c), where f(p) = (1− h(p))/p

9.6 Proper Learners are Sub-Optimal

It is natural to ask for a learning rule to be proper.

Definition 9.12 (Online proper learners [HLM21]). Let H be a concept class. An online learning
rule Lrn is proper for H if for every realizable input sequence S, the function hS : X → [0, 1]
given by

hS(x) = Lrn(S, x)

is a convex combination of hypotheses from H, that is, there are coefficients αh such that

hS(x) =
∑
h∈H

αhh(x).

When the learner is deterministic, the function hS is {0, 1}-valued, and so the learner is
proper if hS ∈ H for every realizable input sequence S.

We can adapt this definition to the setting of prediction using expert advice (with k = 0) by
requiring that at all times, the learner picks a convex combination of the experts before seeing
their current advice. In other words, each round of the game is played as follows:

(i) The algorithm chooses a convex combination of the experts.

(ii) The adversary chooses both the advice of the experts and the correct label.

This can also be expressed in the language of game theory: in each round, the first player
(the learner) picks a mixed strategy (a convex combination of experts), and then the second
player (the adversary) picks a pure strategy (the true label). The payoff is the probability that
the learner’s random strategy agrees with the adversary’s pure strategy. The optimal proper
algorithm was found in [AWY08] via a random walk analysis, similarly to our algorithms.

For an hypothesis class H we define the optimal randomized mistake bound for proper
learners M⋆p(H) by restricting the learners to be proper:

M⋆p(H) = inf
Lrnp

sup
S

M(Lrnp;S),

where the infimum is taken over all proper learning rules, and the supremum is taken over all
realizable sequences.

54

We can similarly define the analogous notion for prediction using expert advice, namely
M⋆p(n) = M⋆p(Un).

We can solve the problem of prediction using expert advice optimally with the learning rule
RandSOA. This learning rule is improper, a property it shares with Littlestone’s SOA algorithm
that it is based on. In this section, we show that any proper learning rule makes more mistakes
than RandSOA when used to solve this problem.

Theorem 9.13 (Mistake bound of a proper learner). For every n ≥ 1, the optimal mistake
bound for proper randomized learners solving prediction using expert advice is

M⋆p(n) = Hn − 1 = lnn− (1− γ) + o(1),

where Hn is the harmonic number 1 + 1/2 + · · ·+ 1/n.

In contrast, we have ⌊log4 n⌋ ≤ M⋆(n) ≤ log4 n [BP19, Theorem 6].
We prove Theorem 9.13 by proving a lower bound. A matching upper bound can be found

e.g. in [KP17, Section 18.1], and we prove it here as well for completeness. We start with the
lower bound.

Lemma 9.14. Consider prediction using expert advice with n experts. For any proper learner
Lrnp there exists a strategy for the adversary under which the loss of the learner is at least Hn−1.
Consequently,

M⋆p(n) ≥ Hn − 1.

Proof. We will run the prediction game for n− 1 rounds. At the i’th round, let Gi be the set of
experts which are consistent with the examples seen so far, and let Bi be the remaining experts.

We set the true label to 0. All experts in Bi predict 1. An expert in Gi maximizing µi also
predicts 1, and all other experts in Gi predict 0. Clearly |Gi+1| = |Gi| − 1, and the loss of the
learner is

µi(Bi) +
µi(Gi)

|Gi|
=

1

|Gi|
+

|Gi| − 1

|Gi|
µi(Bi) ≥

1

|Gi|
.

After n− 1 rounds, there is precisely one expert left, and the loss of the learner is at least

n∑
i=2

1

i
= Hn − 1.

This completes the proof.

The matching upper bound is given by a natural “follow the leader” algorithm.

Lemma 9.15. Consider prediction using expert advice with n experts. Let FTL be the algorithm
which chooses a random expert among those who have not made any mistake so far. The loss of
FTL on any realizable sequence is at most Hn − 1. Consequently,

M⋆p(n) ≤ Hn − 1.

Proof. As in the proof of Lemma 9.14, let Gi be the set of experts which have not made any
mistake before round i. Thus |G1| = n, and at all times, |Gi| ≥ 1. The loss of FTL in the i’th
round is precisely

|Gi| − |Gi+1|
|Gi|

=

|Gi|∑
j=|Gi+1|+1

1

|Gi|
≤

|Gi|∑
j=|Gi+1|+1

1

j
.

55

Therefore the total loss of the learner across all rounds is

∞∑
i=1

|Gi| − |Gi+1|
|Gi|

≤
∞∑
i=1

|Gi|∑
j=|Gi+1|+1

1

j
≤

n∑
j=2

1

j
,

which completes the proof.

10 Open Questions

Our work naturally raises directions for future work.

General Questions

Multiclass setting. Daniely et al. [DSBDSS15] extended the definition of Littlestone dimension
to the multiclass setting, and showed that it gives the exact mistake bound for deterministic
algorithm. Can we extend the definition of randomized Littlestone dimension to this setting?

A potential application is the problem of prediction using expert advice when the predictions
are non-binary, a setting studied in [BP19].

For more recent work on multiclass classification which involves various combinatorial
dimensions, see [BCD+22,KVK22].

Proper learning of arbitrary hypothesis classes. In Section 9.6 we show that improper
learning algorithms outperform proper learning algorithm in online learning of the hypothesis
class Un. What can we say about arbitrary hypothesis classes, and in particular, about the ratio
M⋆p(H)/M⋆(H)?

Mistake Bounds

Adaptive algorithms. Algorithm WeightedRandSOA gives the optimal mistake bound, but
requires knowledge of k. Theorem 8.7 gives an algorithm which doesn’t require knowledge of k,
and has a regret bound of Õ(

√
M⋆(H, k) · log k) (this is the loss beyond M⋆(H, k)). What is the

optimal regret bound?

Speed of convergence to the mistake bound. Given an hypothesis class H, how many
rounds are needed in order to guarantee a loss of RL(H) − ϵ? Proposition 7.2 shows (via
Theorem 7.1) that the answer is at most 2RL(H) +O(

√
RL(H) log(RL(H/ϵ) + log(1/ϵ)). Is this

tight whenever H is infinite?
Proposition 7.8 shows that this bound is fairly good when H is “strongly infinite”, and

Proposition 7.6 gives a lower bound of log(1/ϵ) for all infinite H.

A related question concerns the regime in which the number of rounds is less than 2RL(H).
For every T it clearly holds that RL(H,T) ≤ T/2, and when T ≤ 2RL(H)− ω(

√
T logT), this is

tight up to an o(1) additive term, as the proof of Proposition 7.4 shows. For larger T, the error
term in the proposition gets larger, reaching O(

√
T logT) for T close to 2RL(H). What is the

optimal bound on T/2− RL(H,T) for the entire range T ≤ 2RL(H)?

Characterizing the equality cases of M⋆(H) ≤ M⋆D(H) ≤ 2M⋆(H). In Section 6.3.2 we gave
two examples showing that both inequalities can be tight. Can we characterize the two families
of classes for which each inequality is tight? For example, it can be shown that every class H
satisfying M⋆(H) = M⋆D(H) must be infinite, but not vice versa.

56

Prediction using Expert Advice

Quantitative bounds. The first part in Theorem 2.6 asserts that M⋆(n, k) ≤ 1
2D(n, k) +

O
(√

D(n, k)
)
. It will be interesting to get quantitative bounds on the second-order term in

terms of M⋆D(n, k). By the second part of Theorem 2.6 we know that in some cases (n = 2) it is
Ω
(√

M⋆D(n, k)
)
. Does an upper bound of

M⋆(n, k) ≤ 1

2
M⋆D(n, k) +O

(√
M⋆D(n, k)

)
hold for all n, k?

In addition, it will be interesting to find explicit bounds on M⋆(n, k), M⋆D(n, k); by Theorem 2.5,
we know that when k ≫ log n then15

M⋆(n, k) = k +Θ
(√

k log n
)
.

How about for other values of n, k? Brânzei and Peres [BP19] have the state-of-the-art bounds
in the regime k ≪ log n, but we are not aware of any results in other regimes, e.g. when
k = Θ(log n). As a matter of fact, to the best of our knowledge, even the leading asymptotic
terms in the regime k = Θ(log n) (described in Section 9.5) were unknown prior to this work.

Proper predictions and repeated game playing. Consider the prediction using the expert
advice problem, when the learner is restricted to predict with a convex combination of the
experts. That is, at the beginning of each round (before seeing the advice of the n experts), the
learner picks a convex combination of the experts and predicts accordingly. What is the optimal
expected number of mistakes in this game?16

The optimal algorithm for this problem was identified in [AWY08]. We comment that this
game can also be presented in the language of game theory: assume a repeated zero-sum game
with 0/1 values, where each round is played as follows: player (i) chooses a (mixed) strategy
and reveals it to player (ii), who then replies with a strategy of his own. What is the optimal
accumulated payoff that player (i) can guarantee provided that she has n strategies and that
the sequence of strategies chosen by player (ii) is such that player (i) has a pure strategy that
loses to at most k of them? Proper predictions in the prediction with expert advice setting are
equivalent to mixed strategies here.

Prediction using expert advice with different budgets. Section 9 considers prediction
using expert advice in the k-realizable setting. The goal is to determine Lk(Un) and RLk(Un).
One can ask more generally for the deterministic and randomized Littlestone dimensions of the
weighted hypothesis class Uk1,...,kn = {(h1, k1), . . . , (hn, kn)}, where h1, . . . , hn are the hypotheses
in Un. In particular, which parameter determines the ratio RL(U

k⃗
)/L(U

k⃗
)?

In the case of two experts, the arguments in Theorem 9.11 can be extended to give an exact
formula for both quantities:

RL(Uk,ℓ) =
k
(
k+ℓ+1
≥ℓ+1

)
+ ℓ
(
k+ℓ+1
≥k+1

)
+ (k + ℓ+ 1)

(
k+ℓ
k

)
2k+ℓ+1

and L(Uk,ℓ) = k + ℓ+ 1.

Roughly speaking, RL(Uk,ℓ) ≈ max(k, ℓ),17 and so

RL(Uk,ℓ)

L(Uk,ℓ)
≈ max(k, ℓ)

k + ℓ
.

15The upper bound is also given in [CBFH+97].
16We answer this question only for the case k = 0 in Section 9.6.
17This follows from the formula RL(Uk,l) = 2E[max

(
Bin(k + 1, 1

2
),Bin(ℓ+ 1, 1

2
)
)
]− 1.

57

Experiments suggest that more generally, if k1, k2 are the two largest elements in k⃗, then

RL(U
k⃗
)

L(U
k⃗
)

≈ max(k1, k2)

k1 + k2
.

Efficient implementation of WeightedRandSOA. It can be shown that RandSOA(Un) has
an efficient implementation. Can WeightedRandSOA be implemented efficiently on Un for k ≥ 1,
say in time poly(n, k)?

[ALW06,BP19] observed that the only information relevant to the adversary’s choice of
expert predictions is the state of each round, which is indicated by a (k+1)-ary vector specifying
how many experts have i ∈ {0, . . . , k} mistakes left. Using this observation, it is straightforward
to derive an algorithm that calculates the randomized Littlestone dimension of every possible
state in time complexity O(n2k), and then uses these values to determine the optimal prediction
in each round efficiently. Can we improve this?

Acknowledgments

Shay Moran is a Robert J. Shillman Fellow; he acknowledges support by ISF grant 1225/20, by
BSF grant 2018385, by an Azrieli Faculty Fellowship, by Israel PBC-VATAT, by the Technion
Center for Machine Learning and Intelligent Systems (MLIS), and by the the European Union
(ERC, GENERALIZATION, 101039692). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority
can be held responsible for them.

References

[ABED+21] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon
Yogev. Adversarial laws of large numbers and optimal regret in online classifica-
tion. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 447–455, 2021.

[ABL+22] Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private
and online learnability are equivalent. J. ACM, 69(4):28:1–28:34, 2022. doi:

10.1145/3526074.

[AL99] Peter Auer and Philip M Long. Structural results about on-line learning models
with and without queries. Machine Learning, 36(3):147–181, 1999.

[ALW06] Jacob Abernethy, John Langford, and Manfred K Warmuth. Continuous experts
and the binning algorithm. In International Conference on Computational Learning
Theory, pages 544–558. Springer, 2006.

[AWY08] Jacob Abernethy, Manfred K Warmuth, and Joel Yellin. Optimal strategies from
random walks. In Proceedings of The 21st Annual Conference on Learning Theory,
pages 437–446, 2008.

[BCD+22] Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, and Amir Yehudayoff.
A characterization of multiclass learnability, 2022. URL: https://arxiv.org/
abs/2203.01550.

58

https://doi.org/10.1145/3526074
https://doi.org/10.1145/3526074
https://arxiv.org/abs/2203.01550
https://arxiv.org/abs/2203.01550

[BDPSS09] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning.
In COLT, 2009.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K War-
muth. Learnability and the Vapnik–Chervonenkis dimension. Journal of the ACM
(JACM), 36(4):929–965, 1989.

[BNS19] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Characterizing the sample complex-
ity of pure private learners. Journal of Machine Learning Research, 20(146):1–33,
2019. URL: http://jmlr.org/papers/v20/18-269.html.

[BP19] Simina Brânzei and Yuval Peres. Online learning with an almost perfect expert.
Proceedings of the National Academy of Sciences, 116(13):5949–5954, 2019.

[CBFH+97] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E
Schapire, and Manfred K Warmuth. How to use expert advice. Journal of the
ACM (JACM), 44(3):427–485, 1997.

[CBFHW96] Nicolo Cesa-Bianchi, Yoav Freund, David P Helmbold, and Manfred K Warmuth.
On-line prediction and conversion strategies. Machine Learning, 25(1):71–110,
1996.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006.

[CHLL97] Gérard Cohen, Iiro Honkala, Simon Litsyn, and Antoine Lobstein. Covering codes.
Elsevier, 1997.

[Cov65] T. Cover. Behavior of sequential predictors of binary sequences. In Proc. of the
4th Prague Conference on Information Theory, Statistical Decision Functions and
Random Processes, pages 263–272. Publishing House of the Czechoslovak Academy
of Sciences, 1965.

[Doo53] J. L. Doob. Stochastic processes. John Wiley & Sons, Inc., New York; Chapman
& Hall, Ltd., London, 1953.

[DSBDSS15] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass
learnability and the ERM principle. J. Mach. Learn. Res., 16:2377–2404, 2015.

[DSS14] Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems.
In COLT, pages 287–316, 2014.

[Fel17] Vitaly Feldman. A general characterization of the statistical query complexity.
In Satyen Kale and Ohad Shamir, editors, Proceedings of the 30th Conference
on Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017,
volume 65 of Proceedings of Machine Learning Research, pages 785–830. PMLR,
2017. URL: http://proceedings.mlr.press/v65/feldman17c.html.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[FX15] Vitaly Feldman and David Xiao. Sample complexity bounds on differentially private
learning via communication complexity. SIAM J. Comput., 44(6):1740–1764, 2015.
doi:10.1137/140991844.

59

http://jmlr.org/papers/v20/18-269.html
http://proceedings.mlr.press/v65/feldman17c.html
https://doi.org/10.1137/140991844

[GPS16] Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Towards optimal algorithms
for prediction with expert advice. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 528–547. SIAM, 2016.

[Han14] Steve Hanneke. Theory of disagreement-based active learning. Foundations and
Trends® in Machine Learning, 7(2-3):131–309, 2014. URL: http://dx.doi.org/
10.1561/2200000037, doi:10.1561/2200000037.

[Haz19] Elad Hazan. Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207, 2019.

[HLM21] Steve Hanneke, Roi Livni, and Shay Moran. Online learning with simple predictors
and a combinatorial characterization of minimax in 0/1 games. Proceedings of
Machine Learning Research, 134:1–26, 2021.

[HY15] Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn.
Res., 16:3487–3602, 2015. URL: https://dl.acm.org/doi/10.5555/2789272.
2912111, doi:10.5555/2789272.2912111.

[KLMZ17] Daniel M. Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active clas-
sification with comparison queries. In Chris Umans, editor, 58th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 355–366. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.40.

[KP17] Anna R Karlin and Yuval Peres. Game theory, alive, volume 101. American
Mathematical Soc., 2017.

[KvE15] Wouter M. Koolen and Tim van Erven. Second-order quantile methods for experts
and combinatorial games. In Proceedings of the 28th Conference on Learning
Theory, 2015.

[KVK22] Alkis Kalavasis, Grigoris Velegkas, and Amin Karbasi. Multiclass learnability
beyond the pac framework: Universal rates and partial concept classes, 2022. URL:
https://arxiv.org/abs/2210.02297.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine learning, 2(4):285–318, 1988.

[LS14a] Haipeng Luo and Robert Schapire. Towards minimax online learning with unknown
time horizon. In International Conference on Machine Learning, pages 226–234.
PMLR, 2014.

[LS14b] Haipeng Luo and Robert E Schapire. A drifting-games analysis for online learning
and applications to boosting. Advances in Neural Information Processing Systems,
27, 2014.

[LW94] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm.
Information and computation, 108(2):212–261, 1994.

[MS10] Indraneel Mukherjee and Robert E Schapire. Learning with continuous experts
using drifting games. Theoretical Computer Science, 411(29-30):2670–2683, 2010.

[Nat89] Balas K. Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97,
1989.

60

http://dx.doi.org/10.1561/2200000037
http://dx.doi.org/10.1561/2200000037
https://doi.org/10.1561/2200000037
https://dl.acm.org/doi/10.5555/2789272.2912111
https://dl.acm.org/doi/10.5555/2789272.2912111
https://doi.org/10.5555/2789272.2912111
https://doi.org/10.1109/FOCS.2017.40
https://arxiv.org/abs/2210.02297

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[RS14] Alexander Rakhlin and Karthik Sridharan. Online non-parametric regression. In
Conference on Learning Theory, pages 1232–1264. PMLR, 2014.

[RSS12] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and randomize:
From value to algorithms. Advances in Neural Information Processing Systems,
25, 2012.

[Sha12] Shai Shalev-Shwartz. Online learning and online convex optimization. Found.
Trends Mach. Learn., 4(2):107–194, 2012. doi:10.1561/2200000018.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[VC74] Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka,
1974.

[Vov90] Volodimir G Vovk. Aggregating strategies. Proc. of Computational Learning
Theory, 1990, 1990.

A Results of Cesa-Bianchi, Freund, Helmbold and Warmuth

The foundational work of Cesa-Bianchi, Freund, Helmbold andWarmuth [CBFHW96] (henceforth,
Cesa-Bianchi et al.) implies several inequalities involving the quantities M⋆D(n, k) and D(n, k).
These inequalities follow directly from results in Cesa-Bianchi et al., but are not stated explicitly
in their work. In this short appendix, we show how to derive these results from their work.

The first two results use the notation on+k(1), which stands for a quantity tending to zero as
n+ k tends to infinity.

A.1 A proof of M⋆D(n, k) ≥ (1− o(1))D(n, k)

For n = 1, we prove in this paper that M⋆D(1, k) = D(1, k) = k for all k ≥ 0 (Theorem 9.4). For
n ≥ 2, we will prove the inequality M⋆D(n, k) ≥ (1− on+k(1))D(n, k) using results of Cesa-Bianchi
et al.

Let n ≥ 2 and k ≥ 0. Cesa-Bianchi et al. define the function

up(n, k, β) =
log n+ k log 1

β

log 2
1+β

in Equation (4). Then, in Theorem 2 they show that for all β ∈ [0, 1] and for all non-negative
n, k,

D(n, k) ≤ up(n, k, β).

In Theorem 3, Cesa-Bianchi et al. define a function Low(n, k) and show that

M⋆D(n, k) ≥ Low(n, k).

In Theorem 4, they show that for every n, k, the value of β ∈ [0, 1] can be chosen to be some
β⋆ = β⋆(n, k) such that

lim
n+k→∞

Low(n, k)

up(n, k, β⋆)
= 1,

61

https://doi.org/10.1561/2200000018

and so
Low(n, k) = (1− on+k(1)) up(n, k, β

⋆).

Putting everything together, we can now deduce

M⋆D(n, k) ≥ Low(n, k) = (1− on+k(1)) up(n, k, β
⋆) ≥ (1− on+k(1))D(n, k).

A.2 A proof of d⋆(n, k) = (1 + o(1))D(n, k)

Let d⋆ = d⋆(n, k) be the unique solution to the equation d = log n + dh(k/d). The results of
Cesa-Bianchi et al. imply that d⋆(n, k) = (1+on+k(1))D(n, k), as we now indicate. The argument
will employ the functions up and Low and the parameter β⋆ mentioned in Appendix A.1.

In Lemma 1 (attributed to Vovk [Vov90]), Cesa-Bianchi et al. show that d⋆(n, k) is the
minimum value of up(n, k, β). We also have the bound D(n, k) ≤ up(n, k, β) for all β from their
Theorem 2, and therefore d⋆(n, k) ≥ D(n, k). It remains to show d⋆(n, k) ≤ (1 + o(1))D(n, k).

Theorem 4 of Cesa-Bianchi et al. shows that

lim
n+k→∞

Low(n, k)

up(n, k, β⋆)
= 1.

Since d⋆(n, k) ≤ up(n, k, β⋆), it follows that

d⋆(n, k) ≤ (1 + on+k(1)) Low(n, k).

Since Low(n, k) ≤ M⋆D(n, k) ≤ D(n, k), this completes the proof.

A.3 A proof of M⋆D(n, k) ≥ D(n, k)− 1 for constant k

In this section we show that for every constant k, the inequality M⋆D(n, k) ≥ D(n, k)− 1 holds
for large enough n.

Denote by BW(n, k) the maximal number of mistakes that the Binomial Weights algorithm
of Cesa-Bianchi et al. makes with parameters n, k. Theorem 5 in Cesa-Bianchi et al. states
that for every k there is nk such that M⋆D(n, k) ≥ BW(n, k)− 1 for every n > nk. As we show
below, their proof actually shows that M⋆D(n, k) ≥ D(n, k) − 1. (This is a stronger inequality
since BW(n, k) ≤ D(n, k) by their Theorem 1.)

We now explain how to derive the bound M⋆D(n, k) ≥ D(n, k)− 1, for large enough n, from
the proof of Theorem 5. Fix an integer k ≥ 0. Cesa-Bianchi et al. define the function

J(k, q) = 2q
/(q

≤ k

)
.

Cesa-Bianchi et al. prove the existence of an integer nk such that if n > nk and J(k, q) ≤ n <
J(k, q + 1) then M⋆D(n, k) ≥ q − 1.

The inequality J(k, q) ≤ n < J(k, q + 1) is equivalent to q ≤ log n + log
(

q
≤k

)
and q + 1 >

log n+ log
(
q+1
≤k

)
, and so q = D(n, k) by definition, completing the proof.

62

	Introduction
	Main results
	Realizable Case
	Agnostic Case
	Prediction Using Expert Advice
	Variations

	Technical Overview
	Combinatorial Characterizations
	Quasi-balanced Trees
	Prediction using Expert Advice

	Background and Basic Definitions
	Randomized Littlestone Dimension and Optimal Expected Mistake Bound
	Main Result and Proof
	Infinite Trees
	Trees Maximizing the Expected Branch Length

	Quasi-balanced Trees
	Definition and Basic Properties
	A Concentration Lemma for Quasi-Balanced Trees
	Applications of Quasi-Balanced Trees

	Bounded Horizon
	Proof of Theorem 7.1
	Approaching RL(H)
	Mistake Bound for Few Rounds
	Lower Bounds

	Mistake Bounds in the k-Realizable Setting
	Weighted Hypothesis Classes
	Proof of Optimal Deterministic Mistake Bound
	Proof of Optimal Randomized Mistake Bound
	Explicit Bounds in Terms of Littlestone Dimension
	Adapting to k
	Finite Classes
	The Perceptron

	Prediction using Expert Advice
	Optimal Mistake Bounds
	Proofs of the Upper Bounds on M*(n,k)
	Lower bounding M*(2,k)
	Determining M*(2,k)
	Approximations of D(n,k)
	Proper Learners are Sub-Optimal

	Open Questions
	Results of Cesa-Bianchi, Freund, Helmbold and Warmuth
	A proof of M*D(n,k)≥(1-o(1))D(n,k)
	A proof of d*(n,k)=(1+o(1))D(n,k)
	A proof of M*D(n,k)≥D(n,k)-1 for constant k

